
Hypermodern Screening

Tobias Stenzel

May 31, 2020

CONTENTS

1 Documentation Structure 3

2 References 27

Bibliography 29

Python Module Index 31

Index 33

i

ii

Hypermodern Screening

The hypermodern-screening package provides tools for efficient global sensitivity analyses based on elemen-
tary effects. Its unique feature is the option to compute these effects for models with correlated input parameters. The
underlying conceptual approach is developed by Stenzel (2020). The fundamental idea comes from Ge and Menendez
(2017). It is the combination of inverse transform sampling with an intelligent juggling of parameter positions in the
input vector to create different dependency hierarchies. The package does also include a variety of sampling methods.

Install hypermodern-screening from PyPI with

$ pip install hypermodern_screening

CONTENTS 1

Hypermodern Screening

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION STRUCTURE

The documentation consists of two main parts. The first part is close to the implementation and the second part
provides some background starting from basic definitions of uncertainty qunatification.

The first part describes the concepts that are implemented in this package. It comprises three sections. These are
sampling schemes tailored to the computation of elementary effects (EEs), EEs for correlated parameters and the
importance of sigma normalization. The first two sections are accompanied by tutorials written in jupyter notebooks
that demonstrate the usage of the package:

• Sampling Schemes:

• Elementary Effects:

The second part embedds EEs within uncertainty quantification and, in particular, sensitivity analysis. Thereby, the
motivation to compute EEs is clarified. It also contains a short discussion of methods for models with correlated input
parameters.

1.1 Sampling Schemes

Click at the following nbviewer or mybinder badges to view the tutorial notebook that accompanies this section.

The two presented sampling schemes are the trajectory and the radial design. Although the schemes are tailored to the
computation of EEs, positional differences between them cause differences in their post-processing.

According to several experiments with common test functions by [Campolongo.2011], the best design is the radial
design ([Saltelli.2002]) and the most commonly used is the trajectory design ([Morris.1991]). Both designs are com-
prised by a (𝑘 + 1) × 𝑘-dimensional matrix. The elements are generated in [0, 1]. Afterwards, they can potentially
be transformed to the distributions of choice. The columns represent the different input parameters and each row is a
complete input parameter vector. To compute the aggregate qualitative measures, a set of multiple matrices, or sample
subsets, of input parameters has to be generated.

3

https://nbviewer.jupyter.org/github/tostenzel/hypermodern-screening/blob/master/docs/notebooks/sampling.ipynb
https://mybinder.org/v2/gh/tostenzel/hypermodern-screening/master?filepath=docs%2Fnotebooks%2Fsampling.ipynb
https://nbviewer.jupyter.org/github/tostenzel/hypermodern-screening/blob/master/docs/notebooks/elementary_effects.ipynb
https://mybinder.org/v2/gh/tostenzel/hypermodern-screening/master?filepath=docs%2Fnotebooks%2Felementary_effects.ipynb
https://nbviewer.jupyter.org/github/tostenzel/hypermodern-screening/blob/master/docs/notebooks/sampling.ipynb
https://mybinder.org/v2/gh/tostenzel/hypermodern-screening/master?filepath=docs%2Fnotebooks%2Fsampling.ipynb

Hypermodern Screening

A matrix in radial design is generated the following way: draw a vector of length 2𝑘 from a quasi-random sequence.
The first row, or parameter vector, is the first half of the sequence. Then, copy the first row to the remaining 𝑘 rows.
For each row 𝑘′ of the remaining 2, . . . , 𝑘 + 1 rows, replace the 𝑘′-th element by the 𝑘′-th element of the second half
of the vector. This generates a matrix of the following form:

𝑅𝑅𝑅
(𝑘+1)×𝑘

=

⎛⎜⎜⎜⎜⎜⎝
𝑎1 𝑎2 ... 𝑎𝑘
𝑏1𝑏1𝑏1 𝑎2 ... 𝑎𝑘
𝑎1 𝑏2𝑏2𝑏2 ... 𝑎𝑘
...

...
. . .

...
𝑎1 𝑎2 ... 𝑏𝑘𝑏𝑘𝑏𝑘

⎞⎟⎟⎟⎟⎟⎠ .

Note here, that each column consists only of the respective first row element, except in one row. From this matrix, one
EE can be obtained for each parameter 𝑋𝑖. This is achieved by using the (𝑖 + 1)-th row as function argument for the
minuend and the first row as the subtrahend in the EE formula in Equation (ref{eq:EE}). Then, ∆(𝑖,𝑗) = 𝑏

(𝑗)
𝑖 − 𝑎

(𝑗)
𝑖 .

The asterisk is an index for all elements of a vector.

𝑑𝑖 =
𝑌 (𝑎∼𝑖𝑎∼𝑖𝑎∼𝑖, 𝑏𝑖) − 𝑌 (𝑎𝑎𝑎)

𝑏𝑖 − 𝑎𝑖
=

𝑌 (𝑅𝑖+1,*𝑅𝑖+1,*𝑅𝑖+1,*) − 𝑌 (𝑅1,*𝑅1,*𝑅1,*)

𝑏𝑖 − 𝑎𝑖
.

If the number of radial subsamples is high, the draws from the quasi-random sequence lead to a fast coverage of the
input space (compared to a random sequence). However, a considerable share of steps will be large, the maximum is
1 − 𝜖 in a sample space of [0, 1]. This amplifies the aforementioned problem of EE-based measures with non-linear
functions. The quasi-random sequence considered here is the Sobol’ sequence. It is comparably successful in the
dense coverage of the unit hypercube, but also conceptually more involved. Therefore, its presentation is beyond the
scope of this work. As the first elements of each Sobol’ sequence, the direction numbers, are equal I draw the sequence
at once for all sets of radial matrices.

Next, I present the trajectory design. As we will see, it can lead to a relatively representative coverage for a very small
number of subsamples but also to repetitions of similar draws. I skip the equations that generate a trajectory and instead
present the method verbally. There are different forms of trajectories. I focus on the common version presented in
[Morris.1991] that generates equiprobable elements. The first step is to decide the number 𝑝 of equidistant grid points
in interval [0, 1]. Then, the first row of the trajectory is composed of the lower half value of these grid points. Now,
fix ∆ = 𝑝/[2(𝑝− 1)]. This function implies, that adding ∆ to the lowest point in the lowest half results in the lowest
point of the upper half of the grid points, and so on. It also implies that 0.5 is the lower bound of ∆. The rest of the
rows is constructed, first, by copying the row one above and, second, by adding ∆ to the 𝑖-th element of the 𝑖 + 1-th
row. The created matrix scheme is depicted below.

𝑇𝑇𝑇
(𝑘+1)×𝑘

=

⎛⎜⎜⎜⎜⎜⎝
𝑎1 𝑎2 ... 𝑎𝑘
𝑏1𝑏1𝑏1 𝑎2 ... 𝑎𝑘
𝑏1𝑏1𝑏1 𝑏2𝑏2𝑏2 ... 𝑎𝑘
...

...
. . .

...
𝑏1𝑏1𝑏1 𝑏2𝑏2𝑏2 ... 𝑏𝑘𝑏𝑘𝑏𝑘

⎞⎟⎟⎟⎟⎟⎠
In contrary to the radial scheme, each 𝑏𝑖 is copied to the subsequent row. Therefore, the EEs have to be determined
by comparing each row with the row above instead of with the first row. Importantly, two random transformations
are common. These are, first, randomly switching rows, and second, randomly interchanging the 𝑖-th column with
the (𝑘 − 𝑖)-th column and then reversing the column. The first transformation is skipped as it does not add additional
coverage and because we need the stairs-shaped design to facilitate later transformations which account for correlations
between input parameters. The second transformation is adapted because it is important to also have negative steps
and because it sustains the stairs shape. Yet, this implies that ∆ is also parameter- and trajectory-specific. Let 𝑓 and ℎ
be additional indices representing the input parameters. The derivative formula is adapted to the trajectory design as
follows:

𝑑𝑖 =
𝑌 (𝑏𝑓≤𝑖𝑏𝑓≤𝑖𝑏𝑓≤𝑖, 𝑎ℎ>𝑖𝑎ℎ>𝑖𝑎ℎ>𝑖) − 𝑌 (𝑏𝑓<𝑖𝑏𝑓<𝑖𝑏𝑓<𝑖, 𝑎ℎ≥𝑖𝑎ℎ≥𝑖𝑎ℎ≥𝑖)

𝑏𝑖 − 𝑎𝑖
=

𝑌 (𝑇𝑖+1,*)𝑇𝑖+1,*)𝑇𝑖+1,*) − 𝑌 (𝑇𝑖,*𝑇𝑖,*𝑇𝑖,*)

𝑏𝑖 − 𝑎𝑖
.

4 Chapter 1. Documentation Structure

Hypermodern Screening

The trajectory design involves first, a fixed grid, and second and more importantly, a fixed step ∆, s.t. {∆} = {±∆}.
This implies less step variety and less space coverage vis-á-vis the radial design for a larger number of draws.

To improve the sample space coverage by the trajectory design, [Campolongo.2007] develop a post-selection approach
based on distances. The approach creates enormous costs for more than a small number of trajectories. This problem
is effectively mitigated by [Ge.2014]. The following describes the main ideas of both contributions.

The objective of both works is to select 𝑘 matrices. [Campolongo.2007] assign a pair distance to each pair of trajecto-
ries in the start set. Thereafter, they identify each possible combination of 𝑘 from 𝑁 trajectories. Then, they compute
an aggregate distance for each combination based on the single pair distances. Finally, the optimized trajectory set is
the subset with the highest aggregate distance.

This is computationally very costly because each aggregate distance is a sum of a binomial number of pair distances.
For example,

(︀
30
15

)︀
= 155117520. To decrease the computation time, [Ge.2014] propose two improvements. First,

in each iteration 𝑖, they select only 𝑁(𝑖) − 1 matrices from a set containing 𝑁(𝑖) trajectories until the set size has
decreased to 𝑘. Second, they compute the pair distances in each iteration based on the aggregate distances and the pair
distances from the first set. Due to numerical imprecisions, their improvement does not always result in the same set as
obtained from [Campolongo.2007]. However, the sets are usually very similar in terms of the aggregate distance. This
thesis only uses the first step in [Ge.2014] to post-select the trajectory set because the second step does not provide
any gain. [This refers only to my implementation.]

So far, we have only considered draws in [0,1]. For uncorrelated input parameters from arbitrary distributions with
well-defined cumulative distribution function (CDF), Φ−1, one would simply evaluate each element (potentially in-
cluding the addition of the step) by the inverse CDF, or quantile function, Φ, of the respective parameter. One intuition
is, that Φ−1 maps the sample space to [0,1]. Hence Φ can be used to transform random draws in [0,1] to the sample
space of the arbitrary distribution. This is a basic example of so-called inverse transform sampling ([Devroye.1986])
which we recall in the next section.

The following section describes the computation of Elementary Effects for correlated input parameters from samples
in trajectory and radial design.

1.2 Elementary Effects

Click at the following nbviewer or mybinder badges to view the tutorial notebook that accompanies this section.

This section describes the approach to extend the EE-based measures to input parameters that are correlated. It largely
follows [Ge.2017]. Their main achievement is to outline a transformation of samples in radial and trajectory design that
incorporates the correlation between the input parameters. This implies, that the trajectory and radial samples cannot
be written as before. The reason is that the correlations of parameter 𝑋𝑖, to which step ∆𝑖 is added, imply that all other
parameters𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖 in the same row with non-zero correlation with 𝑋𝑖 are changed as well. Therefore, the rows cannot be
denoted and compared as easily by 𝑎’s and 𝑏’s as in the last section. Transforming these matrices allows to re-define the
EE-based measures accordingly, such that they sustain the main properties of the ordinary measures for uncorrelated
parameters. The property is being a function of the mean derivative. The section covers the approach in a simplified
form, focussing on normally distributed input parameters. Yet, [Ge.2017] do not fully develop these measures. I
explain how their measures can lead to arbitrary rankings for correlated input parameters. I first cover the inverse
transform sampling method that incorporates correlations between random draws from the parameter distributions.
Second, I describe the Elementary Effects that I redesigned based on my analysis of [Ge.2017] and the drawbacks
therein. Lastly, I comment on these drawbacks in more detail.

1.2. Elementary Effects 5

https://nbviewer.jupyter.org/github/tostenzel/hypermodern-screening/blob/master/docs/notebooks/elementary_effects.ipynb
https://mybinder.org/v2/gh/tostenzel/hypermodern-screening/master?filepath=docs%2Fnotebooks%2Felementary_effects.ipynb

Hypermodern Screening

1.2.1 Inverse transform sampling

The section deals with developing a recipe for transforming draws 𝑢𝑢𝑢 = {𝑢1, 𝑢2, ..., 𝑢𝑘} from [0, 1] for an input
parameter vector to draws 𝑥𝑥𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑘} from an arbitrary joint normal distribution. We will do this in three
steps.

For this purpose, let ΣΣΣ be a non-singular variance-covariance matrix and let 𝜇𝜇𝜇 be the mean vector. The 𝑘-variate
normal distribution is denoted by 𝒩𝑘(𝜇𝜇𝜇,ΣΣΣ).

Creating potentially correlated draws 𝑥𝑥𝑥 from 𝒩𝑘(𝜇𝜇𝜇,ΣΣΣ) is simple. Following [Gentle.2006], this can be achieved the
following way: draw a 𝑘-dimensional row vector of independent and identically distributed (i.i.d.) standard normal
deviates from the univariate 𝑁(0, 1) distribution, such that 𝑧𝑧𝑧 = {𝑧1, 𝑧2, ..., 𝑧𝑘}, and compute the Cholesky decom-
position of Σ, such that ΣΣΣ = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 . The lower triangular matrix is denoted by 𝑇𝑇𝑇𝑇𝑇𝑇 . Then apply the operation in the
equation below to obtain the correlated deviates 𝑥𝑥𝑥 from 𝒩𝑘(𝜇𝜇𝜇,ΣΣΣ). Then,

𝑥𝑥𝑥 = 𝜇𝜇𝜇 + 𝑇𝑇 𝑧𝑇𝑇𝑇 𝑧𝑇𝑇𝑇 𝑧𝑇 .

The next step is to understand that we can split the operation in thje above equation into two subsequent operations.
The separated first part allows to potentially map correlated standard normal deviates to other distributions than the
normal one. For this, let 𝜎𝜎𝜎 be the vector of standard deviations and let 𝑅𝑘𝑅𝑘𝑅𝑘 be the correlation matrix of 𝑥𝑥𝑥.

The first operation is to transform the standard deviates 𝑧𝑧𝑧 to correlated standard deviates 𝑧𝑐𝑧𝑐𝑧𝑐 by using 𝑧𝑐𝑧𝑐𝑧𝑐 = 𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇 . In
this equation, 𝑄𝑇𝑄𝑇𝑄𝑇 is the lower matrix from the Cholesky decomposition 𝑅𝑘𝑅𝑘𝑅𝑘 = 𝑄𝑇𝑄𝑄𝑇𝑄𝑄𝑇𝑄. This is equivalent to the above
approach in [Gentle.2006] for the specific case of the multivariate standard normal distribution 𝒩𝑘(0, 𝑅𝑘). This is true
because for multivariate standard normal deviates, the correlation matrix is equal to the covariance matrix.

The second operation is to scale the correlated standard normal deviates: 𝑧𝑧𝑧 = 𝑧𝑐(𝑖)𝑧𝑐(𝑖)𝑧𝑐(𝑖)𝜎𝜎𝜎(𝑖)(𝑖)(𝑖) +𝜇𝜇𝜇., where the 𝑖 s indicate an
element-wise multiplication. This equation is specific to normally distributed parameters.

The last step to construct the final approach is to recall the inverse transform sampling method. Therewith, we can
transform the input parameter draws 𝑢𝑢𝑢 to uncorrelated standard normal draws 𝑧𝑧𝑧. Then we will continue with the two
operations in the above paragraph. The transformation from 𝑢𝑢𝑢 to 𝑧𝑧𝑧 is denoted by 𝐹−1(Φ𝑐), where the 𝑐 in Φ𝑐 stands
for the introduced correlations. This transformation is summarized by the following three steps:

Step 1: 𝑧𝑧𝑧 = Φ(𝑢)Φ(𝑢)Φ(𝑢)

Step 2: 𝑧𝑐𝑧𝑐𝑧𝑐 = 𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇

Step 3: 𝑥𝑥𝑥 = 𝜇𝜇𝜇 + 𝑧𝑐(𝑖)𝑧𝑐(𝑖)𝑧𝑐(𝑖)𝜎(𝑖)𝜎(𝑖)𝜎(𝑖)

I denote these three steps by 𝐹−1(Φ𝑐) = 𝒯2.

To map 𝑢 to different sample spaces, Step 3 can be substituted. For instance, this could be achieved by applying
Φ−1,𝑢 and the inverse CDF of the desired distribution to 𝑧𝑐. [The procedure described by the three steps above is
equivalent to an inverse Rosenblatt transformation and a linear inverse Nataf transformation for parameters in normal
sample space and connects to Gaussian copulas. For the first two transformations, see [Lemaire.2013], p. 78 - 113.
These concepts can be used to transform deviates in [0,1] to the sample space of arbitrary distributions by using the
properties sketched above under different conditions.]

The one most important point to understand is that the transformation comprised by the three steps is not unique
for correlated input parameters. Rather, the transformation changes with the order of parameters in vector 𝑢𝑢𝑢. This
can be seen from the lower triangular matrix 𝑄𝑇𝑄𝑇𝑄𝑇 . To prepare the next equation, let 𝑅𝑘𝑅𝑘𝑅𝑘 = (𝜌𝑖𝑗)

𝑘
𝑖𝑗=1 and sub-matrix

𝑅ℎ𝑅ℎ𝑅ℎ = (𝜌𝑖𝑗)
ℎ
𝑖𝑗=1, ℎ ≤ 𝑘. Also let 𝜌*,𝑗𝑖𝜌

*,𝑗
𝑖𝜌
*,𝑗
𝑖 = (𝜌1,𝑗 , 𝜌2,𝑗 , ..., 𝜌𝑖−1,𝑗) for 𝑗 ≥ 𝑖 with the following abbreviation 𝜌𝑖𝜌𝑖𝜌𝑖 := 𝜌*,𝑖𝑖𝜌

*,𝑖
𝑖𝜌
*,𝑖
𝑖 .

6 Chapter 1. Documentation Structure

Hypermodern Screening

Following [Madar.2015], the lower matrix can be written as

𝑄𝑇𝑄𝑇𝑄𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ... 0

𝜌1,2

√︁
1 − 𝜌21,2 0 ... 0

𝜌1,3
𝜌2,3−𝜌1,2𝜌1,3√

1−𝜌2
1,2

√︁
1 − 𝜌3𝜌3𝜌3𝑅

−1
2𝑅−1
2𝑅−1
2 𝜌𝑇3𝜌

𝑇
3𝜌
𝑇
3 ... 0

...
...

...
. . .

...

𝜌1,𝑘
𝜌2,𝑘−𝜌1,2𝜌1,𝑘√

1−𝜌2
1,2

𝜌3,𝑘𝜌3,𝑘𝜌3,𝑘−𝜌*,𝑘
3𝜌
*,𝑘
3𝜌
*,𝑘
3 𝑅−1

2𝑅−1
2𝑅−1
2 𝜌𝑇

3𝜌
𝑇
3𝜌
𝑇
3√

1−𝜌3𝜌3𝜌3𝑅
−1
2𝑅−1
2𝑅−1
2 𝜌𝑇

3𝜌
𝑇
3𝜌
𝑇
3

...
√︁

1 − 𝜌𝑘𝜌𝑘𝜌𝑘𝑅
−1
2𝑅−1
2𝑅−1
2 𝜌𝑇𝑘𝜌

𝑇
𝑘𝜌
𝑇
𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This equation, together with Step 2, implies that the order of the uncorrelated standard normal deviates 𝑧𝑧𝑧 constitutes
a hierarchy amongst the correlated deviates 𝑧𝑐𝑧𝑐𝑧𝑐 in the following manner: the first parameter is not subject to any
correlations, the second parameter is subject to the correlation with the first parameter, the third parameter is subject to
the correlations with the parameters before, etc. Therefore, if parameters are correlated, typically 𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇𝑄𝑇 𝑧𝑇 ̸= 𝑄𝑇 (𝑧′)𝑇𝑄𝑇 (𝑧′)𝑇𝑄𝑇 (𝑧′)𝑇

and 𝐹−1(Φ)(𝑢𝑢𝑢) ̸= 𝐹−1(Φ)(𝑢′𝑢′𝑢′), where 𝑧′𝑧′𝑧′ and 𝑢′𝑢′𝑢′ denote 𝑧𝑧𝑧 and 𝑢𝑢𝑢 in different orders. The next section shows how the
three sampling steps play in the design of the Elementary Effects for correlated parameters.

1.2.2 Elementary Effects

I redesign the measures in [Ge.2017] by scaling the ∆ in the denominator according to the nominator. I refer to the
redesigned measures as the correlated and the uncorrelated Elementary Effects, 𝑑𝑐𝑖 and 𝑑𝑢𝑖 . The first measure includes
the respective parameters effect on the other parameters and the second measure excludes it. The idea is, that both
parameters have to be very small for one parameter to be fixed as constant or non-random. It is still a open reasearch
question what very small should be. The measures are given below for arbitrary input distributions and for samples in
trajectory and radial design.

𝑑𝑐,𝑇𝑖 =
𝑓
(︀
𝒯 (𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖− 1)

)︀
− 𝑓

(︀
𝒯 (𝑇𝑖−1,*𝑇𝑖−1,*𝑇𝑖−1,*; 𝑖)

)︀
𝒯 (⌊⟩) − 𝒯 (⊣⟩)

𝑑𝑢,𝑇𝑖 =
𝑓
(︀
𝒯 (𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖)

)︀
− 𝑓

(︀
𝒯 (𝑇𝑖,*𝑇𝑖,*𝑇𝑖,*; 𝑖)

)︀
𝒯 (⌊⟩) − 𝒯 (⊣⟩)

𝑑𝑐,𝑅𝑖 =
𝑓
(︀
𝒯 (𝑅𝑖+1,*𝑅𝑖+1,*𝑅𝑖+1,*; 𝑖− 1)

)︀
− 𝑓

(︀
𝒯 (𝑅1,*𝑅1,*𝑅1,*; 𝑖− 1)

)︀
𝒯 (⌊⟩) − 𝒯 (⊣⟩)

𝑑𝑢,𝑅𝑖 =
𝑓
(︀
𝒯 (𝑅𝑖+1,*𝑅𝑖+1,*𝑅𝑖+1,*; 𝑖)

)︀
− 𝑓

(︀
𝒯 (𝑅1,*𝑅1,*𝑅1,*; 𝑖)

)︀
𝒯 (⌊⟩) − 𝒯 (⊣⟩)

.

In the above equations, 𝒯 (·; 𝑖) := 𝒯3
(︂
𝒯2
(︀
𝒯1(·; 𝑖)

)︀
; 𝑖

)︂
. 𝒯1(·; 𝑖) orders the parameters, or row elements, to establish

the right correlation hierarchy. 𝒯2, or 𝐹−1(Φ𝑐), correlates the draws in [0, 1] and transforms them to the sample space.
𝒯3(·; 𝑖) reverses the element order back to the start, to be able to apply the subtraction in the numerator of the EEs
row-by-row. Index 𝑖 in 𝒯1(·; 𝑖) and 𝒯3(·; 𝑖) stands for the number of initial row elements that are cut and moved to the
back of the row in the same order. Applying 𝒯 (𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖 − 1) and 𝒯 (𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖) to all rows 𝑖 of trajectory 𝑇𝑇𝑇 gives the

1.2. Elementary Effects 7

Hypermodern Screening

following two transformed trajectories:

𝒯1(𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖− 1) =

⎛⎜⎜⎜⎜⎜⎝
𝑎𝑘 𝑎1 𝑎𝑘−1

𝑏1𝑏1𝑏1 𝑎2 𝑎𝑘
𝑏2𝑏2𝑏2 𝑎3 𝑏1𝑏1𝑏1
...

...
...

. . .
...

𝑏𝑘𝑏𝑘𝑏𝑘 𝑏1𝑏1𝑏1 𝑏𝑘−1𝑏𝑘−1𝑏𝑘−1

⎞⎟⎟⎟⎟⎟⎠

𝒯1(𝑇𝑖,*𝑇𝑖,*𝑇𝑖,*; 𝑖− 1) =

⎛⎜⎜⎜⎜⎜⎝
𝑎1 𝑎2 𝑎𝑘
𝑎2 𝑎𝑘 𝑏1𝑏1𝑏1
𝑎3 𝑏1𝑏1𝑏1 𝑏2𝑏2𝑏2
...

...
...

. . .
...

𝑏1𝑏1𝑏1 𝑏2𝑏2𝑏2 𝑏𝑘𝑏𝑘𝑏𝑘

⎞⎟⎟⎟⎟⎟⎠
Two points can be seen from Equation above equations. First, 𝒯1(𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖 − 1) and 𝒯1(𝑇𝑖,*𝑇𝑖,*𝑇𝑖,*; 𝑖), i.e. the (𝑖 + 1)-th
row in the first equation and the (𝑖)-th row in the second equation, only differ in the 𝑖-th element. The difference is
𝑏𝑖 − 𝑎𝑖. Thus, these two rows can be used to compute the EEs like in the uncorrelated case in the qualitative GSA
section. However, in this order, the parameters are in the wrong positions to be directly handed over to the function,
as the 𝑖-th parameter is always in front. The second point is that in 𝒯1(𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖 − 1), 𝑏𝑖 is in front of the 𝑖-th row.
This order prepares the establishing of the right correlation hierarchy by 𝒯2, such that the ∆ in 𝑎𝑖 + ∆ is included to
transform all other elements representing 𝑋∼𝑖. Importantly, to perform 𝒯2, mean vector 𝑥𝑥𝑥 and covariance matrix ΣΣΣ
and its transformed representatives have always to be re-ordered according to each row. Then, 𝒯3 restores the original
row order and 𝑑𝑓𝑢𝑙𝑙𝑖 can comfortably be computed by comparing function evaluations of row 𝑖+ 1 in 𝒯 (𝑇𝑖+1,*𝑇𝑖+1,*𝑇𝑖+1,*; 𝑖− 1)
with function evaluations of row 𝑖 in 𝒯 (𝑇𝑖,*𝑇𝑖,*𝑇𝑖,*; 𝑖 − 1). Now, the two transformed trajectories only differ in the 𝑖-th
element in each row 𝑖.

Assuming samples in trajectory design, one can also write the denominator equivalently but more explicitly for all
four EEs as 𝐹−1

(︀
𝑄𝑇

𝑘,*𝑘−1(𝑗)𝑅𝑇
𝑖+1,*𝑘−1(𝑗) +𝑄𝑇

𝑘,𝑘Φ𝑢(𝑏𝑖)
)︀
−𝐹−1

(︀
𝑄𝑇

𝑘,*𝑘−1(𝑗)𝑅𝑇
𝑖,*𝑘−1(𝑗) +𝑄𝑇

𝑘,𝑘Φ𝑢(𝑎𝑖)
)︀
. Not

accounting for 𝑄𝑡 like [Ge.2017] leads to arbitrarily decreased independent Elementary Effects for input parameters
with higher correlations.

The transformation for the samples in radial design are equivalent except that the subtrahend samples do only consist
of reordered first rows.

For 𝑋1, ..., 𝑋𝑘 ∼ 𝒩𝑘(𝜇𝜇𝜇,ΣΣΣ), the denominator of 𝑑𝑢,*𝑖 simplifies drastically to(︀
𝜇𝑖 + 𝜎𝑖

(︀
𝑄𝑇

𝑘,*𝑘−1(𝑗)𝑇𝑇
𝑖+1,*𝑘−1(𝑗) + 𝑄𝑇

𝑘,𝑘Φ𝑢(𝑏𝑖)
)︀

−
(︀
𝜇𝑖 + 𝜎𝑖

(︀
𝑄𝑇

𝑘,*𝑘−1(𝑗)𝑇𝑇
𝑖+1,*𝑘−1(𝑗) + 𝑄𝑇

𝑘,𝑘Φ𝑢(𝑎𝑖)
)︀

= 𝜎𝑖𝑄
𝑇
𝑘,𝑘

(︀
Φ𝑢(𝑏𝑖) − Φ𝑢(𝑎𝑖)

)︀
.

In this package, the implementation restricts itself to uniform and normally distributed input parameters. It
resembles the expression in the last equation.

1.2.3 Drawbacks in [Ge.2017]

For the following explanation, I refer to a normal sample space. The drawback in the EE definitions by [Ge.2017]
is that ∆ is transformed multiple times in the numerator but not in the denominator. Therefore, these measures are
not Elementary Effects in the sense of a derivative. To understand the intuition, it is easier to view ∆ as 𝑏 − 𝑎.
The transformation in the numerator is performed by applying 𝐹−1(Φ𝑐) to 𝑢𝑗

𝑖 = 𝑎𝑗𝑖 + ∆(𝑖,𝑗). The implications
of this approach is twofold. The first implication is that function 𝑓 is evaluated at arguments that are non-linearily
transformed by Step 1 and Step 3. Then, the difference in the numerator is divided by the difference between the
changed input parameter and the base input parameter – in unit space. Therefore, numerator and denominator refer to
different sample spaces. This makes the results hard to interpret. It also increases the influence of more extreme draws
in [0, 1] because Φ−1 is very sensitive to these. Therefore, it will take a larger sample for the aggregate EE measures

8 Chapter 1. Documentation Structure

Hypermodern Screening

in [Ge.2017] to converge. Additionally, these problems are amplified if there are large differences between the inputs’
standard deviation through the subsequent multiplicative scaling. The large sensitivity to more extreme draws implies
also a higher sensitivity to larger differences in ∆ = 𝑏 − 𝑎. Therefore, the results will differ in their level depending
on the sampling scheme. The largest drawback, however, is that 𝑏𝑖 − 𝑎𝑖 in the denominator of 𝑑𝑖𝑛𝑑𝑖 does not account
for the transformation of the 𝑏𝑖 − 𝑎𝑖 in the nominator by the establishing of correlations in Step 2. This transformation
decreases 𝑏𝑖 − 𝑎𝑖 proportional to the degree of correlations of the respective input parameter as can be seen by the last
row of the lower Cholesky matrix. Hence, 𝑑𝑖𝑛𝑑𝑖 is inflated by the the input parameters’ correlations even tough this
measure is introduced as an independent effect. It actually is a dependent effect as well. Because the full EE has to be
interpreted with regards to the independent EE, this problem spills over to 𝑑𝑓𝑢𝑙𝑙𝑖 . For these reasons, I argue that these
measures can not be used for screening.

The next section explains why it is important to sigma-normalize elementary effects.

1.3 Sigma Normalization

The aim of this section is to show how important it can be to sigma-normalize the Elementary Effects or the derived
statistics thereof. A code example is given by:

Compute sigma-normalized statistics of Elementary Effects.
measures_sigma_norm = hms.compute_measures(ees_list, sd_qoi, sd_inputs, sigma_
→˓norm=True)

Let 𝑔(𝑋1, ..., 𝑋𝑘) =
∑︀𝑘

𝑖=1 𝑐𝑖𝑋𝑖 be an arbitrary linear function. Let 𝜌𝑖,𝑗 be the linear correlation between 𝑋𝑖 and 𝑋𝑗 .
Then, for all 𝑖 ∈ 1, ..., 𝑘, I expect

𝑑𝑢,*𝑖 = 𝑐𝑖,

𝑑𝑐,*𝑖 =

𝑘∑︁
𝑗=1

𝜌𝑖,𝑗𝑐𝑗 .

These results correspond to the intuition provided by the example in [Saltelli.2008], p. 123. Both equations state that,
conceptually, the result does not depend on the sampling scheme.

Let us consider the case without any correlations between the inputs. Additionally, let 𝑐𝑖 = {3, 2, 1} and 𝜎2
𝑋𝑖

=
{1, 4, 9} for 𝑖 ∈ {1, 2, 3}. The following results are derived from [Saltelli.2008]. Let us first compute the Sobol’
indices. As 𝑔 does not include any interactions, 𝑆𝑇

𝑖 = 𝑆𝑖. Additionally, we have Var(𝑌) =
∑︀𝑘

𝑖=1 𝑐
2
𝑖𝜎

2
𝑋𝑖

and
Var𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖

(︀
𝐸𝑋∼𝑖

[𝑌 |𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖]
)︀

= 𝑐2𝑖𝜎
2
𝑋𝑖

. Table 1 compares three different sensitvity measures. These are the total Sobol’
indices, 𝑆𝑇

𝑖 (Measure I, the mean absolute EE, 𝛾*
𝑖 (Measure II), and the squared sigma-normalized mean absolute EE,

(𝜇*
𝑖
𝜎𝑋𝑖

𝜎𝑌
)2 (Measure III).

Table 1: Table 1: Importance measures for parametric uncertainty
Parameter Measure I Measure II Measure III
X_1 9 3 9
X_2 8 2 8
X_3 9 1 9

In context of screening, 𝑆𝑇
𝑖 is the objective measure that we would like to predict approximately. We observe that 𝛾*

𝑖

ranks the parameters incorrectly. The reason is that 𝛾*
𝑖 is only a measure of the influence of 𝑋𝑖 on 𝑌 and not of the

influence of the variation and the level of 𝑋𝑖 on the variation of 𝑌 . We also see that (𝜇*
𝑖
𝜎𝑋𝑖

𝜎𝑌
)2 is an exact predictor for

𝑆𝑇
𝑖 as it does not only generate the correct ranking but also the right effect size. Importantly, this result is specific to a

linear function without any interactions and correlations. However, it underlines the point that 𝛾*
𝑖 alone is not sufficient

for screening. Following Ge.2017, one approach would be to additionally consider the EE variation, 𝜎𝑖. However,
analysing two measures at once is difficult for models with a large number of input parameters. Table 1 indicates

1.3. Sigma Normalization 9

Hypermodern Screening

that (𝜇*
𝑖
𝜎𝑋𝑖

𝜎𝑌
)2 and also 𝜇*

𝑖
𝜎𝑋𝑖

𝜎𝑌
can be an appropriate alternative. The actual derivative version of this measure is also

recommended by guidelines of the Intergovernmental Panel for Climate Change ([IPCC.1999]).

1.4 Uncertainty Quantification

According to [Smith.2014], Model-based forecasting includes two main steps: the first step is calibration. In this step,
the input parameters of the model are estimated. The second step is the prediction. The prediction contains the model
evaluation at the estimated parameters. This allows us to make statements about potential scenarios. These statements
are made in a probabilistic way. Thereby, the uncertainty of these statements is emphasised.

There are four sources of uncertainty in modern forecasting that are based on complex computational models
([Smith.2014]). The first source, the model uncertainty, is the uncertainty about whether the mathematical model
represents the reality sufficiently. The second source, the input uncertainty, is the uncertainty about the size of the
input parameters of the model. The third one, the numerical uncertainty, comes from potential errors and uncertain-
ties introduced by the translation of a mathematical to a computational model. The last source of uncertainty, the
measurement uncertainty, is the accuracy of the experimental data that is used to approximate and calibrate the model.

We deal with the second source of uncertainty, the input uncertainty. In my view, this is the source for which UQ
offers the most and also the strongest instruments. This might result from the fact that the estimation step produces
standard errors as basic measures for the variation or uncertainty in the input parameter estimates. These can then be
used to compute a variety of measures for the impact of the input uncertainty on the variation in the model output.

The following explains the basic notation. It is essential to define the quantity that one wants to predict with a model.
This quantity is called output, or quantity of interest, and is denoted by 𝑌 . For instance, the QoI can be the impact
of a 500 USD tuition subsidy for higher education on average schooling years. The uncertain model parameters
𝑋1, 𝑋2, ..., 𝑋𝑘 are denoted by vector 𝑋𝑋𝑋 . The function that computes QoI Y by evaluating a model and, if necessary,
post-processing the model output is denoted by 𝑓(𝑋1, 𝑋2, ..., 𝑋𝑘). Thus,

𝑌 = 𝑓(𝑋𝑋𝑋). (1.1)

From this point forward, I also refer to 𝑓 as the model. Large-scale UQ applications draw from various fields such
as probability, statistics, analysis, and numerical mathematics. These disciplines are used in a combined effort for pa-
rameter estimation, surrogate model construction, parameter selection, uncertainty analysis, local sensitivity analysis
(LSA), and GSA, amongst others. Drawing from [Smith.2014]) I briefly sketch the first four components. The last
two components, local and especially global sensitivity analysis, are discussed more extensively after that.

Parameter estimation covers the calibration step. There is a large number of estimation techniques for various types of
models.

If the run time of a model is too long to compute the desired UQ measures, surrogate models are constructed to
substitute the original model 𝑓 ([McBrider.2019]). These surrogate models are functions of the model input parameters
which are faster to evaluate. The functions are also called interpolants because they are computed from a random
sample of input vectors, drawn from the input distribution and evaluated by the model. Typically, a surrogate model
is computed by minimising a distance measure between a predetermined type of function and the model evaluations
at the sample points. Therefore, the surrogate model interpolates this sample. Some specifications, like orthogonal
polynomials, have properties which can simplify the computation of UQ measures tremendously ([Xiu.2010]).

Another way to reduce the computation time, not directly of the model but of UQ measures, is to reduce the number
of uncertain input parameters as part of a parameter selection. The decision which parameters to fix is made based on
sensitivity measures. This is called screening or factor fixing ([Saltelli.2008]). This point will be taken up again in the
next section.

Uncertainty analysis is the core of the prediction step. It comprises two parts. The first part is the construction of
the QoI’s probability distribution by propagating the input uncertainty through the model. For instance, this can be
achieved by evaluating a sample of random input parameters (as also required for the construction of a surrogate
model). The second part is the computation of descriptive statistics like the probabilities for a set of specific events

10 Chapter 1. Documentation Structure

Hypermodern Screening

in the QoI range using this distribution. Both steps are conceptually simple. The construction of the probability
distribution is also important for designing subsequent steps like a sensitivity analysis. For example, if the distribution
is unimodal and symmetric, variance-based UQ measures are meaningful. If the distribution has a less tractable, then
density-based measures are better suited ([Plischke.2013])).

The next section is a short and general presentation of sensitivity analysis.

1.5 Sensitivity Analysis

This section draws from [Saltelli.2004] and [Saltelli.2008]. They define sensitivity analysis as “the study of how
uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in
the model input” ([Saltelli.2004], p. 42)). This apportioning implies a ranking of input parameters in terms of their
importance for the model output. [Saltelli.2004] (2004, p. 52) define the most important parameter as “the one that [if
fixed to its true, albeit unknown value] would lead to the greatest reduction in the variance of the output Y.” Therefore,
a factor is not important if it influences the level of output 𝑌 but rather its variance.

Sensitivity analysis includes different objectives. These have to be determined at first because the choice of methods
depends on these objectives. Typically, the main and final goal is factor prioritisation. This is the aforementioned
ranking of input parameters in terms of their importance. This ranking can be used to concentrate resources on data
acquisition and estimation of a subset of parameters. The methods meeting the demands of factor prioritisation best
are called quantitative. These typically require the highest computational effort.

There are multiple other objectives. The objective in this package is screening or factor fixing. It is basically the
same as factor prioritisation except that it only aims to identify the input parameters that can be fixed at a given value
without significantly reducing the output variance. Therefore, it focuses on the lowest parameters in the potential
importance ranking. The reason why one would pursue factor fixing instead of factor prioritisation is computational
costs. As factor fixing generates less information than factor prioritisation, less powerful methods can be applied.
These methods require less computational resources and are called qualitative. Factor fixing can be used to prepare
factor prioritisation for models that are more costly to evaluate. In this sense, it serves the same purpose as surrogate
modelling.

Another important distinction is local versus global sensitivity analysis (GSA). It essentially refers to the applied
methods. In fact, the definition by [Saltelli.2004] is already tailored to a global sensitivity analysis. In contrast to the
given definition, “until quite recently, sensitivity analysis was [. . .] defined as a local measure of the effect of a given
input on a given output” ([Saltelli.2004], p. 42)). This older definition differs from the definition used here in two
aspects. First, it emphasises the level of output rather than its variance. Second, it describes the measure as a local
one. The drawback of this approach becomes clear by considering an example of a local sensitivity measure. This
measure is the so-called system derivate 𝐷𝑖 = 𝜕𝑌

𝜕𝑋𝑖
([Rabitz.1989]). The derivative is typically computed at the mean,

𝑋𝑖, of the estimate for 𝑋𝑖. 𝐷𝑖 is a so-called one-at-a-time measure because it changes only one factor. It has the
following four drawbacks: first, it does not account for the interaction between multiple input parameters because it is
one-at-a-time. Second, if the model derivation can not be derived analytically, the choice of the (marginal) change in
𝑋𝑖 is arbitrary. Third, the local derivative at 𝑋𝑖 is only representative for the whole sample space of a random input if
the model is linear in 𝑋𝑖. Fourth, the measure does not relate to the output variance 𝑉 𝑎𝑟(𝑌). For these reasons, the
field, its definitions and its methods have evolved beyond the notion of local sensitivity analysis. Yet, until recently, the
main part of applications in different disciplines, such as physics ([Saltelli.2004] or economics ([Harenberg.2019]),
still uses local measures.

The next to sections present quantitative and qualitative GSA. Screening measures belong to the latter.

1.5. Sensitivity Analysis 11

Hypermodern Screening

1.6 Quantitative GSA

Quantitative GSA aims to determine the precise effect size of each input parameter and its variation on the output
variation. The most common measures in quantitative GSA are the Sobol’ sensitivity indices. The next equation
gives the general expression for the first order index. Let Var𝑋𝑖

(𝑌 |𝑋𝑖) denote the variance of the model output 𝑌
conditional on input parameter 𝑋𝑖. Then,

𝑆𝑖 =
Var𝑋𝑖

(𝑌 |𝑋𝑖)

Var(𝑌)
.

The equation becomes clearer with the following equivalent expression in the next one. For this purpose, let ∼ 𝑖
denote the set of indices except 𝑖. The expectation of 𝑌 for one specific value of 𝑋𝑖 equals the average of the model
evaluations from a sample,𝜒∼𝑖𝜒∼𝑖𝜒∼𝑖, of𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖 and a given value 𝑋𝑖 = 𝑥*

𝑖 . Then, we use 𝐸[𝑓(𝑋𝑖 = 𝑥*
𝑖 ,𝜒∼𝑖𝜒∼𝑖𝜒∼𝑖)] = 𝐸𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖

[𝑌 |𝑋𝑖]
to write the first-order Sobol’ index as the variance of 𝐸𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖

[𝑌 |𝑋𝑖] over all 𝑥*
𝑖 as

𝑆𝑖 =
Var𝑋𝑖

(︀
𝐸𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖

[𝑌 |𝑋𝑖]
)︀

Var(𝑌)
.

The first-order index does not include the additional variance in 𝑌 that may occur from the interaction of 𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖 with
𝑋𝑖. This additional variance is included in the total-order Sobol’ index given by the next equation. It is the same
expression as above except that the positions for 𝑋𝑖 and 𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖 are interchanged. Conditioning on 𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖 accounts for the
inclusion of the interaction effects of 𝑋𝑖.

𝑆𝑇
𝑖 =

Var𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖

(︀
𝐸𝑋∼𝑖 [𝑌 |𝑋∼𝑖𝑋∼𝑖𝑋∼𝑖]

)︀
Var(𝑌)

Computing these measures requires many function evaluations, even if an estimator is used as a shortcut
([Saltelli.2004]). The more time-intense one function evaluation is, the more utility does factor fixing based on quali-
tative measures provide.

1.7 Qualitative GSA

Qualitative GSA deals with the computation of measures that can rank random input parameters in terms of their
impact on the function output and the variability thereof. This is done to a degree of accuracy that allows distinguishing
between influential and non-influential parameters. If the measures for some input parameters are negligibly small,
these parameters can be fixed so that the number of random input parameters decreases for a subsequent quantitative
GSA. This section explains the qualitative measures and the trade-off between computational costs and accuracy.

The most commonly used measures in qualitative GSA is the mean EE, 𝜇, the mean absolute EEs, 𝜇*, and the standard
deviation of the EEs, 𝜎. The EE of 𝑋𝑖 is given by one individual function derivative with respect to 𝑋𝑖. The “change
in”, or the “step of” the input parameter, denoted by ∆. The only restriction is that 𝑋𝑖 + ∆ is in the sample space of
𝑋𝑖. The Elementary Effect, or derivative, is denoted by

𝑑
(𝑗)
𝑖 =

𝑓(𝑋
(𝑗)
∼𝑖𝑋
(𝑗)
∼𝑖𝑋
(𝑗)
∼𝑖 , 𝑋

(𝑗)
𝑖 + ∆(𝑖,𝑗)) − 𝑓(𝑋𝑋𝑋)

∆(𝑖,𝑗)
,

where 𝑗 is an index for the number of 𝑟 observations of 𝑋𝑖. Note, that the EE, 𝑑(𝑗)𝑖 , is equal to the aforementioned local
measure, the system derivate 𝑆𝑖 = 𝜕𝑌

𝜕𝑋𝑖
, except that the value ∆ has not to be infinitesimally small. To offset the third

drawback of 𝑑𝑖 and 𝑆𝑖, that base vector 𝑋𝑖 does not represent the whole input space, one computes the mean EE, 𝜇𝑖,
based on a random sample of 𝑋𝑖 from the input space. The second drawback, that interaction effects are disregarded,
is also offset because elements 𝑋∼𝑖 are also resampled for each new 𝑋𝑖. The mean EE is given by

𝜇𝑖 =
1

𝑟

𝑟∑︁
𝑗=1

𝑑
(𝑗)
𝑖 .

12 Chapter 1. Documentation Structure

Hypermodern Screening

Thus, 𝜇𝑖 is the global version of 𝑑(𝑗)𝑖 . The standard deviation of the EEs writes 𝜎𝑖 =
√︁

1
𝑟

∑︀𝑟
𝑗=1(𝑑

(𝑗)
𝑖 − 𝜇𝑖)2. The

mean absolute EE, 𝜇*
𝑖 , is used to prevent observations of opposite sign to cancel each other out:

𝜇*
𝑖 =

1

𝑟

𝑟∑︁
𝑗=1

⃒⃒
𝑑
(𝑗)
𝑖

⃒⃒
.

Step ∆(𝑖,𝑗) may or may not vary depending on the sample design that is used to draw the input parameters.

One last variant is provided in [Smith.2014]. That is, the scaling of 𝜇*
𝑖 𝑏𝑦

𝜎𝑋𝑖

𝜎𝑌
. This measure is called the sigma-

normalized mean absolute EE:

𝜇*
𝑖,𝜎 = 𝜇*

𝑖

𝜎𝑋𝑖

𝜎𝑌
.

This improvement is necessary for a consistent ranking of 𝑋𝑖. Otherwise, the ranking would be distorted by differences
in the level of the the input parameters. The reason is that the input space constrains ∆. If the input space is larger, the
base value of 𝑋𝑖 can be changed by a larger ∆.

From the aforementioned set of drawbacks of the local derivate 𝐷𝑖 = 𝜕𝑌
𝜕𝑋𝑖

, two drawbacks are remaining for the
EE method. The first drawback is the missing direct link to the variation in 𝑉 𝑎𝑟(𝑌). The second drawback is that
the choice of ∆ is somewhat arbitrary if the derivative is not analytic. To this date, the literature has not developed
convincing solutions for these issues.

In an attempt to establish a closer link between EE-based measures and Sobol’ indices, [Kucherenko.2009] made two
conclusions: the first conclusion is that there is an upper bound for the total index, 𝑆𝑇

𝑖 , such that

𝑆𝑇
𝑖 ≤

1
𝑟

∑︀𝑟
𝑗=1 𝑑

2
𝑖
(𝑗)

𝜋2𝜎𝑌
.

This expression makes use of the squared EE. In light of this characteristic, the use of 𝜎𝑖 as a measure that aims to
include the variation of 𝑑𝑗𝑖 appears less relevant. Nevertheless, this rescaling makes the interpretation more difficult.
The second conclusion is that the Elementary Effects method can lead to false selections for non-monotonic functions.
This is also true if functions are non-linear. The reason is linked to the aforementioned second drawback, the arbitrary
choice of step ∆. More precisely, depending on the sampling scheme, ∆ might be random instead of arbitrary and
constant. In both cases, ∆ can be too large to approximate a derivative. If, for example, the function is highly non-
linear of varying degree with respect to the input parameters 𝑋𝑋𝑋 , ∆ > 𝜖 can easily distort the results. Especially if the
characteristic length of function variation is much smaller than ∆.

1.8 Correlated inputs

So far, all described measures assumed uncorrelated input parameters. Typically, this assumption is not met by prac-
tical applications as joint estimations of parameters tend to produce correlated estimates. This gives reason to expand
sensitivity measures to a more general setting.

Today, several recent contributions deal with the extension of the Sobol’ sensitivity measures to the setup with corre-
lated inputs. For instance, estimators for two complementary sets of measures are developed by [Kucherenko.2012]
and [Mara.2015]. On the other hand, the only contribution to the computation of EE-based screening measures for
correlated parameters is made by [Ge.2017]. Some authors, e.g. [Saltelli.2004] even negate the necessity for expanded
Elementary Effects due to overcomplexity. Obviously, this can lead to false results.

1.8. Correlated inputs 13

Hypermodern Screening

1.9 References

1.10 License

MIT License

Copyright (c) 2020 Tobias

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.11 Modules

• hypermodern_screening.sampling_schemes

• hypermodern_python.select_sample_set

• hypermodern_python.transform_distributions

• hypermodern_python.transform_reorder

• hypermodern_python.transform_ee

• hypermodern_python.screening_measures

1.11.1 hypermodern_screening.sampling_schemes

1.11.2 hypermodern_python.select_sample_set

Decrease a set of sample sets in order to increase its representativeness.

These approaches are developed in the context of the trajectory design because it can not cover the space very densely.
The methods are taken from the effective screening design in [1] and the efficient screening design in [2].

14 Chapter 1. Documentation Structure

Hypermodern Screening

References

[1] Campolongo, F., J. Cariboni, and A. Saltelli (2007). An effective screening design for sensitivity analysis of large
models. Environmental modelling & software 22 (10), 1509–1518. [2] Ge, Q. and M. Menendez (2014). An effi-
cient sensitivity analysis approach for computationally expensive microscopic traffic simulation models. International
Journal of Transportation 2 (2), 49–64.

hypermodern_screening.select_sample_set.campolongo_2007(sample_traj_list, n_traj)
Implement the post-selected sample set in [1].

Takes a list of Morris trajectories and selects the n_traj trajectories with the largest distance between them.
Returns the selection as array with n_inputs at the verical and n_traj at the horizontal axis and as a list. It also
returns the diagonal matrix that contains the pair distance between each trajectory pair.

Parameters

• sample_traj_list (list of ndarrays) – Set of samples.

• n_traj (int) – Number of samples to choose from sample_traj_list.

Return type Tuple[List, ndarray, List]

Returns

• sample_traj_list (list of ndarrays) – Set of trajectories.

• select_dist_matrix (ndarray) – Symmetric distance_matrix of selection.

• select_indices (list) – Indices of selected samples.

hypermodern_screening.select_sample_set.combi_wrapper(iterable, r)
Wrap itertools.combinations, written in C, see [1].

Parameters

• iterable (iterable object) – Hashable container like a list of distinct elements to
combine.

• r (int) – Number to draw from iterable with putting back and regarding the order.

Returns All possible combinations in ascending order.

Return type list_list

Example

>>> combi_wrapper([0, 1, 2, 3], 2)
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]

References

[1] https://docs.python.org/2/library/itertools.html#itertools.combinations.

hypermodern_screening.select_sample_set.compute_pair_distance(sample_0, sam-
ple_1)

Compute the distance measure between a pair of samples.

The aggregate distance between sum of the root of the square distance between each parameter vector of one
sample to each vector of the other sample.

Parameters

1.11. Modules 15

https://docs.python.org/2/library/itertools.html#itertools.combinations

Hypermodern Screening

• sample_0 (ndarray) – Sample with paramters in cols and draws as rows.

• sample_1 (ndarray) – Sample with paramters in cols and draws as rows.

Returns Pair distance.

Return type distance

Raises

• AssertionError – If sample is not in trajectory or radial design shape.

• AssertionError – If the sample shapes differ.

Notes

The distance between two samples is sum of the root of the square distance between each parameter vector of
one sample to each vector of the other sample.

hypermodern_screening.select_sample_set.distance_matrix(sample_list)
Compute symmetric matrix of pair distances for a list of samples.

Parameters sample_list (List[ndarray]) – Set of samples.

Returns Symmatric matrix of pair distances.

Return type distance_matrix

hypermodern_screening.select_sample_set.final_ge_menendez_2014(sample_traj_list,
n_traj)

Implement both “improvements” in [2] vis-a-vis [1].

Parameters

• sample_traj_list (List[ndarray]) – Set of samples.

• n_traj (int) – Number of samples to choose from sample_traj_list.

Return type Tuple[List[ndarray], ndarray, List[int]]

Returns

• sample_traj_list – Set of trajectories.

• select_dist_matrix – Symmetric distance_matrix of selection.

• select_indices – Indices of selected samples.

See also:

next_combi_total_distance_gm14()

Notes

This function, is in fact much slower than intermediate_ge_menendez_2014 because it uses more for loops
to get the pair distances from the right combinations that must be subtracted from the total distances. This
function selects n_traj trajectories from n_traj_sample trajectories by iteratively selecting n_traj_sample - i for i
= 1,. . . ,n_traj_sample - n-traj. For this purpose, next_combi_total_distance_gm14 computes the total distance of
each trajectory combination by using the total distance of each combination in the previous step and subtracting
each pair distance with the dropped trajectory, that yielded the lowest total distance combinations in the previous
step.

16 Chapter 1. Documentation Structure

Hypermodern Screening

hypermodern_screening.select_sample_set.intermediate_ge_menendez_2014(sample_traj_list,
n_traj)

Implement the essential of the two “improvements” in[2] vis-a-vis [1].

This is basically a wrapper around select_trajectories_wrapper_iteration.

Parameters

• sample_traj_list (list of ndarrays) – Set of samples.

• n_traj (int) – Number of samples to choose from sample_traj_list.

Return type Tuple[List, ndarray, List]

Returns

• sample_traj_list (list of ndarrays) – Set of trajectories.

• select_dist_matrix (ndarray) – Symmetric distance_matrix of selection.

• select_indices (list) – Indices of selected samples.

See also:

select_trajectories_wrapper_iteration()

Notes

Oftentimes this function leads to diffent combinations than select_trajectories. However, their total distance is
very close to the optimal solution.

hypermodern_screening.select_sample_set.next_combi_total_distance_gm14(combi_total_distance,
pair_dist_matrix,
lost_index)

Select the set of samples minus one sample.

Based on the algorithmic computation of the total_distance proposed by [2]. I.e. by re-using and adjusting the
first combi_total_distance matrix each iteration. Used for selecting iteratively rather than by brute force.

Parameters

• combi_total_distance_next – Matrix with n_traj + 1 rows. The first n_traj cols are
filled with indices of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

• pair_dist_matrix (ndarray) – Distance matrix of all combinations and their to-
tal_distance.

• lost_index (int) – index of the sample that will be dropped from the samples in the
above objects.

Return type Tuple[ndarray, ndarray, ndarray]

Returns

• combi_total_distance_next – combi_total_distance without the dropped sample.

• pair_dist_matrix_next – pair_dist_matrix without the dropped sample.

• lost_index – lost_index without the dropped sample one iteration before.

1.11. Modules 17

Hypermodern Screening

Notes

The function computes the total distance of each trajectory combination by using the total distance of each
combination in the previous step and subtracting each pair distance with the dropped trajectory, that yielded
the lowest total distance combinations in the previous step. This function, is in fact much slower than se-
lect_trajectories_wrapper_iteration because it uses more for loops to get the pair distances from the right com-
binations that must be subtracted from the total distances.

hypermodern_screening.select_sample_set.select_sample_set_normal(samp_list,
n_select, nu-
meric_zero)

Post-select set of samples based on [0,1] and transform it to stnormal space.

Parameters

• samp_list (List[ndarray]) – Sub-samples.

• n_select (int) – Number of sub-samples to select from samp_list.

• numeric_zero (float) – if normal is True: Prevents scipy.normal.ppt to return -Inf and
Inf for 0 and 1.

Return type Tuple[List[ndarray], List[ndarray]]

Returns

• samp_list

• steps_list

Notes

Function for post-selection is intermediate_ge_menendez_2014 because it is the fastest.

See also:

intermediate_ge_menendez_2014()

hypermodern_screening.select_sample_set.select_trajectories(pair_dist_matrix,
n_traj)

Compute total distance for each n_traj combinations of a set of samples.

Parameters

• pair_dist_matrix (ndarray) – distance_matrix for a sample set.

• n_traj (int) – Number of sample combinations for which the total_distance is com-
puted.

Return type Tuple[List, ndarray]

Returns

• max_dist_indices (list of ints) – Indices of samples in pair_dist_matrix that are part of the
combination with the largest total_distance.

• combi_total_distance (ndarray) – Matrix with n_traj + 1 rows. The first n_traj cols are
filled with indices of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

Raises

• AssertionError – If pair_dist_matrix is not symmetric.

18 Chapter 1. Documentation Structure

Hypermodern Screening

• AssertionError – If the number of combinations does not correspong to the combina-
tions indicated by the size of pair_dist_matrix.

Notes

This function can be very slow because it computes distances between np.binomial(len(pair_dist_matrix, n_traj)
pairs of trajectories. Example: np.biomial(30,15) = 155117520. This selection function yields precise results
because each total distance for each possible combination of trajectories is computed directly. The faster, itera-
tive methods can yield different results that are, however, close in the total distance. The total distances tend to
differentiate clearly. Therefore, the optimal combination is precisely determined.

hypermodern_screening.select_sample_set.select_trajectories_wrapper_iteration(pair_dist_matrix,
n_traj)

Select the set of samples minus one sample.

Used for selecting iteratively rather than by brute force. Implements the main step of the essential of the two
“improvements” from [2] to [1].

Parameters

• pair_dist_matrix (ndarray) – Distance matrix of all combinations and their to-
tal_distance.

• n_traj (int) – number of samples to choose from a set of samples based on their to-
tal_distance.

Return type Tuple[List, ndarray]

Returns

• tracker_keep_indices (list) – Indices of samples part of the selection.

• combi_total_distance (ndarray) – Matrix with n_traj + 1 rows. The first n_traj cols are
filled with indices of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

See also:

select_trajectories()

Notes

Oftentimes this function leads to diffent combinations than select_trajectories. The reason seems to be that
this function deviates from the optimal path due to numerical reasons as different combinations may be very
close (see [2]). However, the total sum of the returned combinations are close. Therefore, the total_distance
loss is negligible compared to the speed gain for large numbers of trajectory combinations. This implies that,
combi_total_distance always differs from the one in select_trajectories because it only contains the com-
bination indices from the last iteration if n_traj is smaller than the sample set minus 1. The trick using
tracker_keep_indices is an elegant solution.

hypermodern_screening.select_sample_set.total_distance(distance_matrix)
Compute the total distance measure of all pairs of samples in a set.

The equation corresponds to Equation (10) in [2].

Parameters distance_matrix (ndarray) – diagonal matrix of distances for sample pairs.

Returns total_distance – total distance measure of all pairs of samples in a set.

Return type float

1.11. Modules 19

Hypermodern Screening

1.11.3 hypermodern_python.transform_distributions

Functions for the inverse Rosenblatt / inverse Nataf transformation (u to z_c).

hypermodern_screening.transform_distributions.covariance_to_correlation(cov)
Convert covariance matrix to correlation matrix.

Parameters cov (ndarray) – Covariance matrix.

Returns Correlation matrix.

Return type corr

hypermodern_screening.transform_distributions.transform_stnormal_normal_corr(z_row,
cov,
mu)

Transform u to z_c.

Transformation from standard normal to multivariate normal space with given correlations following [1], page
77-102.

Step 1) Compute correlation matrix. Step 2) Introduce dependencies to standard normal sample. Step 3) De-
standardize sample to normal space.

Parameters

• z_row (ndarray) – Row of uncorrelated standard normal deviates.

• cov (ndarray) – Covariance matrix of correlated normal deviates.

• mu (ndarray) – Expectation values of correlated normal deviates

Return type Tuple[ndarray, float]

Returns

• x_norm_row – Row of correlated normal deviates.

• correlate_step – Lower right corner element of the lower Cholesky matrix.

Notes

Importantly, the step in the numerator of the uncorrelated Elementary Effect is multiplied by correlate_step.
Therefore, this factor has to multiply the step in the denominator as well to not violate the definition of the func-
tion derivation. This method is equivalent to the one in [2], page 199 which uses the Cholesky decomposition of
the covariance matrix directly. This saves the scaling by SD and expectation. This method is simpler and slightly
more precise than the one in [3], page 33, for normally distributed paramters. [1] explains how Rosenblatt and
Nataf transformation are equal for normally distributed deviates.

References

[1] Lemaire, M. (2013). Structural reliability. John Wiley & Sons. [2] Gentle, J. E. (2006). Random number
generation and Monte Carlo methods. Springer Science & Business Media. [3] Ge, Q. and M. Menendez (2017).
Extending morris method for qualitative global sensitivity analysis of models with dependent inputs. Reliability
Engineering & System Safety 100 (162), 28–39.

hypermodern_screening.transform_distributions.transform_uniform_stnormal_uncorr(uniform_deviates,
nu-
meric_zero=0.005)

Transorm u to z_u.

Converts sample from uniform distribution to standard normal space without regarding correlations.

20 Chapter 1. Documentation Structure

Hypermodern Screening

Parameters

• uniform_deviates (ndarray) – Draws from Uniform[0,1].

• numeric_zero (float) – Used to substitute zeros and ones before applying
scipy.stats.norm to not obtain -Inf and Inf.

Returns uniform deviates converted to standard normal space without correlations.

Return type stnormal_deviates

See also:

morris_trajectory()

Notes

This transformation is already applied as option in morris_trajectory. The reason is that scipy.stats.norm trans-
forms the random draws from the unit cube non-linearily including the addition of the step. To obtain non-
distorted screening measures, it is important to also account for this transformation of the step in the denomina-
tor to not violate the definition of the function derivation. The parameter numeric_zero can be highly influential.
I prefer it to be relatively large to put more proportional, i.e. less weight on the extremes.

1.11.4 hypermodern_python.transform_reorder

Functions for reordering the sample rows following [1].

The intuition behind the reordering in general is the following: To compute the uncorrelated Elementary Effects,
one moves the sampled elements that have been changed by step to the back of the row. For the correlated EE,
one leaves the newly changed element in front, but moves the elements that were changed in rows above to the
end. These compose the left parts of the numerator in the EE definition. One then subtracts the same row, except
that the changed element is unchanged. The reason for these reorderings is that the correlation technique works
hierarchically, like Dominoes. The element before is unaffected by the correlation of the elements thereafter. This
implies that the first element is unchanged, as for the correlated EE. Therefore, the step is involved in correlating the
other elements without becoming changed itself. The opposite is true for the uncorrelated EE. The above procedure
is dervied from the ordering in trajectory samples. It also works for the radial design. Other functions order the
expectations and covariance matrix accordingly. They are also used to initialize the correlating loops in the two
functions in transform_ee.py in the right order.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global sensitivityanalysis of models
with dependent inputs. Reliability Engineering & System Safety 100 (162), 28–39.

hypermodern_screening.transform_reorder.ee_corr_reorder_sample(sample)
For each row i (non-pythonic), move the first i-1 elements to the back.

Parameters sample (ndarray) – sample.

Returns Reordered sample.

Return type sample_reordered

1.11. Modules 21

Hypermodern Screening

Notes

There is no row_plus_one=False option because this is equivalent with uncorr_reorder_sample(sample,
row_plus_one=True).

hypermodern_screening.transform_reorder.ee_uncorr_reorder_sample(sample,
row_plus_one=True)

For each row i (non-pythonic), move the first i elements to the back.

Parameters

• sample (ndarray) – sample.

• row_plus_one (bool) – Add 1 to row index, i.e. start with second row.

Returns Reordered sample.

Return type sample_reordered

hypermodern_screening.transform_reorder.reorder_cov(cov)
Arrange covariance matrix according to the expectation vector.

(When the first element is moved to the end.)

Parameters cov (ndarray) – Covariance matrix of row.

Returns Reordered covariance matrix of row.

Return type cov_reordered

hypermodern_screening.transform_reorder.reorder_mu(mu)
Move the first element of the expectation vector to the end.

Parameters mu (ndarray) – Expectation values of row.

Returns Reordered expectation values of row.

Return type mu_reordered

hypermodern_screening.transform_reorder.reverse_ee_corr_reorder_sample(sample_reordered)
Reverse of function corr_reorder_sample.

Parameters sample_reordered (ndarray) – Reordered sample.

Returns Trjectory in original order.

Return type sample

hypermodern_screening.transform_reorder.reverse_ee_uncorr_reorder_sample(sample_reordered,
row_plus_one=True)

Reverse of function uncorr_reorder_sample.

Parameters sample_reordered (ndarray) – Reordered sample.

Returns sample – Trjectory in original order.

Return type ndarray

hypermodern_screening.transform_reorder.reverse_reorder_cov(cov_reordered)
Reverse of function reorder_cov.

Parameters cov_reordered (ndarray) – Reordered covariance matrix.

Returns cov – Covarince matrix in original order.

Return type ndarray

22 Chapter 1. Documentation Structure

Hypermodern Screening

hypermodern_screening.transform_reorder.reverse_reorder_mu(mu_reordered)
Reverse of function reorder_mu.

Parameters mu_reordered (ndarray) – Reordered expectation values of row.

Returns Expectation values of row in original order.

Return type mu

1.11.5 hypermodern_python.transform_ee

Compute the component for the redesigned EE expressions.

Functions to compute the arguments for the function evaluations in the numerator of the individual uncorrelated and
correlated Elementary Effects following [1], page 33 and 34, and coefficients that scale the step. These functions can
handle samples in both, trajectory and radial, designs.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global sensitivity analysis of models
with dependent inputs. Reliability Engineering & System Safety 100 (162), 28–39.

hypermodern_screening.transform_ee.trans_ee_corr(sample_list, cov, mu, radial=False)
Transform list of samples to two lists of transformed samples.

(For the computation of the correlated Elementary Effects.)

Parameters

• sample_list (List) – Set of untransformed samples.

• cov (ndarray) – Covariance matrix.

• mu (ndarray) – Expectation value.

• radial (bool) – Sample is in trajectory or radial design.

Returns samples containing the rows that are the arguments for the LHS function evaluation for the
correlated Elementary Effect.

Return type trans_piplusone_iminusone

Raises AssertionError – If the dimension of mu, cov and the elements in sample_list do not fit
together.

Notes

For the trajectory design, the transformation for the rows on the RHS of the correlated Elementary Effects
is equal to the one on the LHS of the uncorrelated Elementary Effects. Therefore, if radial is False, this
transformation is skipped and left to trans_ee_uncorr_samples. To compute the EEs from radial samples, the
arguments of the subtracted function are the first row of the sample. Yet, they must be reordered and transformed
according to their order, too.

See also:

trans_ee_uncorr_samples()

hypermodern_screening.transform_ee.trans_ee_uncorr(sample_list, cov, mu, ra-
dial=False)

Transform list of samples to two lists of transformed samples.

1.11. Modules 23

Hypermodern Screening

(For the computation of the uncorrelated Elementary Effects.)

Parameters

• sample_list (List[ndarray]) – Set of untransformed samples.

• cov (np.ndarray) – Covariance matrix.

• mu (ndarray) – Expectation value.

• radial (bool) – Sample is in trajectory or radial design.

Return type Tuple[List[ndarray], List[ndarray], List[ndarray]]

Returns

• trans_piplusone_i – samples containing the rows that are the arguments for the LHS function
evaluation for the uncorrelated Elementary Effect.

• trans_pi_i – samples containing the rows that are the arguments for the RHS function eval-
uation for the uncorrelated Elementary Effect.

• coeff_step – Factors in the denumerator of the uncorrelated Elementary Effect. Accounts for
the decorrelation of the Step.

Raises AssertionError – If the dimension of mu, cov and the elements in sample_list do not fit
together.

Notes

The rows in the two different transformed samples equal to T(p_{i+1}, i) and T(p_{i}, i). Understanding the
transformations may require to write up the first transformation from p_i and p_{i+1} to T_1(p_{i}, i) and
T_1(p_{i+1}, i). T_1 shifts the first i elements to the end for each row p_{i}. This function creates list of
transformations of whole samples. The rows in the samples for T(p_{i}, i) that are to be subtracted from
T(p_{i+1}, i), are still positioned one below compared to the samples for T(p_{i}, i). Therefore, importantly, one
needs to compare each row in a sample from trans_pi_i with the respective row one below in trans_piplusone_i.
To compute the EEs from radial samples, the arguments of the subtracted function are the first row of the sample.
Yet, they must be reordered and transformed according to their order, too.

1.11.6 hypermodern_python.screening_measures

Compute Elementary Effects from transformed samples and derived measures.

Computes the screening measures for correlated inputs that I improved upon [1] by adjusting the step in the denu-
meroter to the transformed step in the nominator in order to not violate the definition of the function derivative.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global sensitivityanalysis of models
with dependent inputs. Reliability Engineering & System Safety 100 (162), 28–39.

hypermodern_screening.screening_measures.compute_measures(ee_i, sd_x=array([1]),
sd_y=array([1]),
sigma_norm=False,
ub=False)

Compute aggregate measures based on (individual) Elementary Effects.

Parameters

24 Chapter 1. Documentation Structure

Hypermodern Screening

• ee_i (ndarray) – (individual) Elementary Effects of input paramters (cols).

• sd_x (ndarray) – Parameters’ SD.

• sd_y (ndarray) – QoI’s SD.

• sigma_norm (bool) – Indicates wether to compute measures normalized by sd_x / sd_y.

• ub (bool) – Indicates wether to compute squared EEs and measures normalized by var_x
/ var_y.

Returns

contains:

ee_mean Mean Elementary Effect for each parameter.

ee_abs_mean Mean absolute correlated Elementary Effect for each parameter.

ee_sd SD of correlated Elementary Effects for each parameter.

Return type measures_list

Notes

ub follows http://www.andreasaltelli.eu/file/repository/DGSA_MATCOM_2009.pdf.

hypermodern_screening.screening_measures.screening_measures(function, traj_list,
step_list, cov, mu,
radial=False)

Compute screening measures for a set of paramters.

Parameters

• function (Callable) – Function or Model of which its parameters are subject to
screening.

• traj_list (List[ndarray]) – List of transformed trajectories according to [1].

• step_list (List[ndarray]) – List of steps that each parameter takes in each trajectory.

• cov (ndarray) – Covariance matrix of the input parameters.

• mu (ndarray) – Expectation values of the input parameters.

• radial (bool) – Sample is in trajectory or radial design.

Return type Tuple[List[ndarray], List[ndarray]]

Returns

• measures_list –

contains:

ee_uncorr Mean uncorrelated Elementary Effect for each parameter.

ee_corr Mean correlated Elementary Effect for each parameter.

abs_ee_uncorr Mean absolute uncorrelated Elementary Effect for each parameter.

abs_ee_corr Mean absolute correlated Elementary Effect for each parameter.

sd_ee_uncorr SD of uncorrelated Elementary Effects for each parameter.

sd_ee_corr SD of correlated Elementary Effects for each parameter.

• obs_list –

1.11. Modules 25

http://www.andreasaltelli.eu/file/repository/DGSA_MATCOM_2009.pdf

Hypermodern Screening

contains:

ee_uncorr_i Observations of uncorrelated Elementary Effects.

ee_corr_i Observations of correlated Elementary Effects.

Notes

The samples can be in trajectory or in radial design and the deviates can be from an arbitrary (correlated) nor-
mal distribution or an uncorrelated Uniform[0,1] distribution. Unorrelated uniform paramters require different
interpretion of mu as a scaling summand rather than the expectation value. It might be necessary to multiply the
SDs by (n_trajs/(n_trajs - 1)) for the precise formula. However, this leads to problems for the case of only one
trajectory - which is used in test_screening_measures_uncorrelated_g_function.

26 Chapter 1. Documentation Structure

CHAPTER

TWO

REFERENCES

Stenzel, T. (2020): Uncertainty Quantification for an Eckstein-Keane-Wolpin model with correlated input
parameters. Master’s thesis, University of Bonn.

Ge, Q. and Menendez, M. (2017). Extending Morris method for qualitative global sensitivity analysis of
models with dependent inputs. Reliability Engineering & System Safety 100(162), 28-39.

27

https://github.com/tostenzel/thesis-projects-tostenzel/blob/master/latex/main.pdf
https://github.com/tostenzel/thesis-projects-tostenzel/blob/master/latex/main.pdf
https://doi.org/10.1016/j.ress.2017.01.010
https://doi.org/10.1016/j.ress.2017.01.010

Hypermodern Screening

28 Chapter 2. References

BIBLIOGRAPHY

[Campolongo.2007] Campolongo, F., A. Saltelli, and J. Cariboni (2011). From screening to quantitative sensitivity
analysis. a unified approach. Computer Physics Communications 182 (4), 978–988.

[Campolongo.2011] Campolongo, F., A. Saltelli, and J. Cariboni (2011). From screening to quantitative sensitivity
analysis. a unified approach. Computer Physics Communications 182 (4), 978–988.

[Devroye.1986] Devroye, L. (1986). Sample-based non-uniform random variate generation. In Proceedings of the
18th conference on Winter simulation, 260–265.

[Ge.2014] Ge, Q. and M. Menendez (2014). An efficient sensitivity analysis approach for computationally expensive
microscopic traffic simulation models. International Journal of Transportation 2 (2), 49–64.

[Ge.2017] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global sensitivity analysis of
models with dependent inputs. Reliability Engineering & System Safety 100 (162), 28–39.

[Gentle.2006] Gentle, J. E. (2006). Random number generation and Monte Carlo methods. Springer Science & Busi-
ness Media.

[IPCC.1999] IPCC (1999). Ipcc expert meetings on good practice guidance and uncertainty management in national
greenhouse gas inventories. Background papers.

[Kucherenko.2009] Kucherenko, S. et al. (2009). Derivative based global sensitivity measures and their link with
global sensitivity indices. Mathematics and Computers in Simulation 79 (10), 3009–3017.

[Kucherenko.2012] Kucherenko, S., S. Tarantola, and P. Annoni (2012). Estimation of global sensitivity indices for
models with dependent variables. Computer physics communications 183 (4), 937–946.

[Lemaire.2013] Lemaire, M. (2013). Structural reliability. John Wiley & Sons.

[Madar.2015] Madar, V. (2015). Direct formulation to cholesky decomposition of a general nonsingular correlation
matrix. Statistics & probability letters 103, 142–147.

[Mara.2015] Mara, T. A., S. Tarantola, and P. Annoni (2015). Non-parametric methods for global sensitivity analysis
of model output with dependent inputs. Environmental modelling & software 72, 173–183.

[McBrider.2019] McBride, K. and K. Sundmacher (2019). Overview of surrogate modeling in chemical process en-
gineering. Chemie Ingenieur Technik 91 (3), 228–239.

[Morris.1991] Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Techno-
metrics 33 (2), 161–174.

[Plischke.2013] Plischke, E., E. Borgonovo, and C. L. Smith (2013b). Global sensitivity measures from given data.
European Journal of Operational Research 226 (3), 536–550.

[Rabitz.1989] Rabitz, H. (1989). Systems analysis at the molecular scale. Science 246 (4927), 221–226.

[Smith.2014] Smith, R. C. (2014). Uncertainty Quantification: Theory, Implementation, and Applications. Philadel-
phia: SIAM-Society for Industrial and Applied Mathematics.

29

Hypermodern Screening

[Saltelli.2002] Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer
physics communications 145 (2), 280–297.

[Saltelli.2004] Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto (2004). Sensitivity Analysis in Practice: A
Guide to Assessing Scientific Models. John Wiley & Sons.

[Saltelli.2008] Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola
(2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons.

[Xiu.2010] Xiu, D. (2010). Numerical methods for stochastic computations: a spectral method approach. Princeton
university press.

30 Bibliography

PYTHON MODULE INDEX

h
hypermodern_screening.screening_measures,

24
hypermodern_screening.select_sample_set,

14
hypermodern_screening.transform_distributions,

20
hypermodern_screening.transform_ee, 23
hypermodern_screening.transform_reorder,

21

31

Hypermodern Screening

32 Python Module Index

INDEX

C
campolongo_2007() (in module hypermod-

ern_screening.select_sample_set), 15
combi_wrapper() (in module hypermod-

ern_screening.select_sample_set), 15
compute_measures() (in module hypermod-

ern_screening.screening_measures), 24
compute_pair_distance() (in module hypermod-

ern_screening.select_sample_set), 15
covariance_to_correlation()

(in module hypermod-
ern_screening.transform_distributions), 20

D
distance_matrix() (in module hypermod-

ern_screening.select_sample_set), 16

E
ee_corr_reorder_sample() (in module hyper-

modern_screening.transform_reorder), 21
ee_uncorr_reorder_sample() (in module hyper-

modern_screening.transform_reorder), 22

F
final_ge_menendez_2014() (in module hyper-

modern_screening.select_sample_set), 16

H
hypermodern_screening.screening_measures

(module), 24
hypermodern_screening.select_sample_set

(module), 14
hypermodern_screening.transform_distributions

(module), 20
hypermodern_screening.transform_ee (mod-

ule), 23
hypermodern_screening.transform_reorder

(module), 21

I
intermediate_ge_menendez_2014()

(in module hypermod-
ern_screening.select_sample_set), 16

N
next_combi_total_distance_gm14()

(in module hypermod-
ern_screening.select_sample_set), 17

R
reorder_cov() (in module hypermod-

ern_screening.transform_reorder), 22
reorder_mu() (in module hypermod-

ern_screening.transform_reorder), 22
reverse_ee_corr_reorder_sample()

(in module hypermod-
ern_screening.transform_reorder), 22

reverse_ee_uncorr_reorder_sample()
(in module hypermod-
ern_screening.transform_reorder), 22

reverse_reorder_cov() (in module hypermod-
ern_screening.transform_reorder), 22

reverse_reorder_mu() (in module hypermod-
ern_screening.transform_reorder), 22

S
screening_measures() (in module hypermod-

ern_screening.screening_measures), 25
select_sample_set_normal() (in module hyper-

modern_screening.select_sample_set), 18
select_trajectories() (in module hypermod-

ern_screening.select_sample_set), 18
select_trajectories_wrapper_iteration()

(in module hypermod-
ern_screening.select_sample_set), 19

T
total_distance() (in module hypermod-

ern_screening.select_sample_set), 19
trans_ee_corr() (in module hypermod-

ern_screening.transform_ee), 23
trans_ee_uncorr() (in module hypermod-

ern_screening.transform_ee), 23

33

Hypermodern Screening

transform_stnormal_normal_corr()
(in module hypermod-
ern_screening.transform_distributions), 20

transform_uniform_stnormal_uncorr()
(in module hypermod-
ern_screening.transform_distributions), 20

34 Index

	Documentation Structure
	References
	Bibliography
	Python Module Index
	Index

