

The Hypermodern Screening Project

Fill out.

Installation

To install the Hypermodern Python project,
run this command in your terminal:

$ pip install hypermodern-screening

License

MIT License

Copyright (c) 2020 Tobias

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Reference

	hypermodern_screening.sampling_schemes

	hypermodern_python.select_sample_set

	hypermodern_python.transform_distributions

	hypermodern_python.transform_reorder

	hypermodern_python.transform_ee

	hypermodern_python.screening_measures

hypermodern_screening.sampling_schemes

Sampling parameter vectors tailored to EE computations.

	
hypermodern_screening.sampling_schemes.morris_trajectory(n_inputs, n_levels, seed=123, normal=False, numeric_zero=0.01, step_function=<function stepsize>, stairs=True)

	Create random sample in trajectory design.

This function creates a random sample for a number of function parameters
(columns). The sample itself consists of the number plus one vectors of
parameter draws (rows).
It also computes the steps taken by each element.

	Parameters

	
	n_inputs (int) – Number of input paramters / columns / rows - 1.

	n_levels (int) – Number of distict grid points.

	seed (int) – Random seed.

	normal (bool) – Indicates whether to transform points by scipy.normal.ppt

	numeric_zero (float) – if normal is True: Prevents scipy.normal.ppt to return -Inf
and Inf for 0 and 1.

	step_function (Callable) – Constant step as function of n_levels added to lower half of point grid.

	stairs (bool) – if False: Randomly shuffle columns, dissolves stairs shape.

	Return type

	Tuple[ndarray, ndarray]

	Returns

	
	B_random – Random sample in trajectory design.
Dimension n_inputs x n_inputs + 1.

	trans_steps – Column vector of steps added to base value point. Sorted by
parameter/column. Dimension n_inputs x 1.

See also

	stepsize()
	See parameter step_function.

	transform_uniform_stnormal_uncorr()
	See parameter numeric_zero.

Notes

The method is described in [1]. This function follows the notation therein.
The idea is tailored to compute a random sample of function arguments to
compute local derivates. First, a random row of paramters is drawn. Then, one
parameter is changed by a fixed step in each row. The local derivatives can be
computed by subtracting the function evaluations of each row from its upper row,
thereby obtaining one local derivative for each parameter. The order of rows and
columns may be shuffled. Shuffling rows creates a negative stepsize. By default,
the shuffling of columns is turned off to facilitate post-processing.
Importantly, an additional option is to evaluate the points by the inverse
normal cdf to account for normally distributed input paramters vice versa
uniformly distributed ones. For this purpose, zeros and ones are slighly shifted
towards the centre of [0,1], so that no infinite values arise. Given the shape
of the inverse cdf, the specific transformation choice has large influences
on the stepsize and therefore the Elementary Effects.
To account for transformations, the step is recomputed for each parameter by
subtracting the last first row from the last row.

References

[1] Morris, M. D. (1991). Factorial sampling plans for preliminary computational
experiments. Technometrics 33 (2), 161–174.

	
hypermodern_screening.sampling_schemes.radial_sample(n_rad, n_inputs, normal=False, sequence='S')

	Generate sample in radial design as described in [1].

For each subsample, there are n_inputs + 1 rows and n_inputs colums.
Each row is identical except of the diagonal of the sample w/o the first row.

	Parameters

	
	n_rad (int) – Number of subsamples.

	n_inputs (int) – Number of input paramters / columns / rows - 1.

	seed – Random seed.

	normal (bool) – Indicates whether to transform points by scipy.normal.ppt

	numeric_zero – if normal is True: Prevents scipy.normal.ppt to return -Inf
and Inf for 0 and 1.

	sequence (str) – Type of quasi-random sequence.

	Return type

	Tuple[List[ndarray], List[ndarray]]

	Returns

	
	sample – Random sample in radial design.
Dimension n_inputs x n_inputs + 1.

	trans_steps – Column vector of steps added to base value point. Sorted by
parameter/column. Dimension n_inputs x 1.

Notes

See [2] for abbreviations of the different sequence types.
In contrary to the trajectory design, the stepsize differs right from the start
by design and only one element changes in each row compared to the first row.
All distict elements in the whole sample are drawn at once because the
default Sobol’ sequence can not be reseeded.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global
sensitivityanalysis of models with dependent inputs. Reliability Engineering &
System Safety 100 (162), 28–39.
[2] <https://github.com/jonathf/chaospy/blob/master/chaospy/distributions/sampler/
generator.py#L62>

	
hypermodern_screening.sampling_schemes.stepsize(n_levels)

	Compute stepsize to create equiprobable sample points for the traj. design.

	Parameters

	n_levels (int) – Number of points in a trajectory sample.

	Returns

	Step added to each lower half point of the point grid.

	Return type

	step

	Raises

	AssertionError – If the number of levels is not an even integer.

Notes

This function, published in [1], assumes that the number of sample points called
“levels” is an even integer. The first row in the trajectory is initialized with
the lower half of the desired equispaced points between 0 and 1. Given the below
formula, the step added to the lowest, second lowest, …, highest point in the
lower half creates the lowest, second lowest, …, highest point in the upper half
of the point grid.

References

[1] Morris, M. D. (1991). Factorial sampling plans for preliminary computational
experiments. Technometrics 33 (2), 161–174.

	
hypermodern_screening.sampling_schemes.trajectory_sample(n_traj, n_inputs, n_levels, seed=123, normal=False, numeric_zero=0.01, step_function=<function stepsize>, stairs=True)

	Loops over morris_sample.

	Parameters

	
	n_inputs (int) – Number if input paramters.

	n_levels (int) – Number of distict grid points.

	seed (int) – Random seed.

	normal (bool) – Indicates whether to transform points by scipy.normal.ppt

	numeric_zero (float) – if normal is True: Prevents scipy.normal.ppt to return -Inf
and Inf for 0 and 1.

	step_function (Callable) – Constant step as function of n_levels added to lower half of point grid.

	stairs (bool) – if False: Randomly shuffle columns, dissolves stairs shape.

	Return type

	Tuple[List[ndarray], List[ndarray]]

	Returns

	
	sample_traj_list – Set of trajectories.

	steps_list – Set of steps taken by each base row.

hypermodern_python.select_sample_set

Decrease a set of sample sets in order to increase its representativeness.

These approaches are developed in the context of the trajectory design because
it can not cover the space very densely.
The methods are taken from the effective screening design in [1] and the
efficient screening design in [2].

References

[1] Campolongo, F., J. Cariboni, and A. Saltelli (2007). An effective screening design
for sensitivity analysis of large models. Environmental modelling & software 22 (10),
1509–1518.
[2] Ge, Q. and M. Menendez (2014). An efficient sensitivity analysis approach for
computationally expensive microscopic traffic simulation models. International Journal
of Transportation 2 (2), 49–64.

	
hypermodern_screening.select_sample_set.campolongo_2007(sample_traj_list, n_traj)

	Implement the post-selected sample set in [1].

Takes a list of Morris trajectories and selects the n_traj trajectories
with the largest distance between them.
Returns the selection as array with n_inputs at the verical and n_traj at the
horizontal axis and as a list.
It also returns the diagonal matrix that contains the pair distance
between each trajectory pair.

	Parameters

	
	sample_traj_list (list of ndarrays) – Set of samples.

	n_traj (int) – Number of samples to choose from sample_traj_list.

	Return type

	Tuple[List, ndarray, List]

	Returns

	
	sample_traj_list (list of ndarrays) – Set of trajectories.

	select_dist_matrix (ndarray) – Symmetric distance_matrix of selection.

	select_indices (list) – Indices of selected samples.

	
hypermodern_screening.select_sample_set.combi_wrapper(iterable, r)

	Wrap itertools.combinations, written in C, see [1].

	Parameters

	
	iterable (iterable object) – Hashable container like a list of distinct elements to combine.

	r (int) – Number to draw from iterable with putting back and regarding the order.

	Returns

	All possible combinations in ascending order.

	Return type

	list_list

Example

>>> combi_wrapper([0, 1, 2, 3], 2)
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]

References

[1] https://docs.python.org/2/library/itertools.html#itertools.combinations.

	
hypermodern_screening.select_sample_set.compute_pair_distance(sample_0, sample_1)

	Compute the distance measure between a pair of samples.

The aggregate distance between sum of the root of the square distance between each
parameter vector of one sample to each vector of the other sample.

	Parameters

	
	sample_0 (ndarray) – Sample with paramters in cols and draws as rows.

	sample_1 (ndarray) – Sample with paramters in cols and draws as rows.

	Returns

	Pair distance.

	Return type

	distance

	Raises

	
	AssertionError – If sample is not in trajectory or radial design shape.

	AssertionError – If the sample shapes differ.

Notes

The distance between two samples is sum of the root of the square distance between
each parameter vector of one sample to each vector of the other sample.

	
hypermodern_screening.select_sample_set.distance_matrix(sample_list)

	Compute symmetric matrix of pair distances for a list of samples.

	Parameters

	sample_list (List[ndarray]) – Set of samples.

	Returns

	Symmatric matrix of pair distances.

	Return type

	distance_matrix

	
hypermodern_screening.select_sample_set.final_ge_menendez_2014(sample_traj_list, n_traj)

	Implement both “improvements” in [2] vis-a-vis [1].

	Parameters

	
	sample_traj_list (List[ndarray]) – Set of samples.

	n_traj (int) – Number of samples to choose from sample_traj_list.

	Return type

	Tuple[List[ndarray], ndarray, List[int]]

	Returns

	
	sample_traj_list – Set of trajectories.

	select_dist_matrix – Symmetric distance_matrix of selection.

	select_indices – Indices of selected samples.

See also

next_combi_total_distance_gm14()

Notes

This function, is in fact much slower than intermediate_ge_menendez_2014
because it uses more for loops to get the pair distances from the right
combinations that must be subtracted from the total distances.
This function selects n_traj trajectories from n_traj_sample trajectories by
iteratively selecting n_traj_sample - i for i = 1,…,n_traj_sample - n-traj.
For this purpose, next_combi_total_distance_gm14 computes the total distance
of each trajectory combination by using the total distance of each combination
in the previous step and subtracting each pair distance with the dropped trajectory,
that yielded the lowest total distance combinations in the previous step.

	
hypermodern_screening.select_sample_set.intermediate_ge_menendez_2014(sample_traj_list, n_traj)

	Implement the essential of the two “improvements” in[2] vis-a-vis [1].

This is basically a wrapper around select_trajectories_wrapper_iteration.

	Parameters

	
	sample_traj_list (list of ndarrays) – Set of samples.

	n_traj (int) – Number of samples to choose from sample_traj_list.

	Return type

	Tuple[List, ndarray, List]

	Returns

	
	sample_traj_list (list of ndarrays) – Set of trajectories.

	select_dist_matrix (ndarray) – Symmetric distance_matrix of selection.

	select_indices (list) – Indices of selected samples.

See also

select_trajectories_wrapper_iteration()

Notes

Oftentimes this function leads to diffent combinations than
select_trajectories. However, their total distance is very close
to the optimal solution.

	
hypermodern_screening.select_sample_set.next_combi_total_distance_gm14(combi_total_distance, pair_dist_matrix, lost_index)

	Select the set of samples minus one sample.

Based on the algorithmic computation of the total_distance proposed by [2].
I.e. by re-using and adjusting the first combi_total_distance matrix each
iteration. Used for selecting iteratively rather than by brute force.

	Parameters

	
	combi_total_distance_next – Matrix with n_traj + 1 rows. The first n_traj cols are filled with indices
of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

	pair_dist_matrix (ndarray) – Distance matrix of all combinations and their total_distance.

	lost_index (int) – index of the sample that will be dropped from the samples in the above objects.

	Return type

	Tuple[ndarray, ndarray, ndarray]

	Returns

	
	combi_total_distance_next – combi_total_distance without the dropped sample.

	pair_dist_matrix_next – pair_dist_matrix without the dropped sample.

	lost_index – lost_index without the dropped sample one iteration before.

Notes

The function computes the total distance of each trajectory
combination by using the total distance of each combination in the previous step
and subtracting each pair distance with the dropped trajectory, that yielded
the lowest total distance combinations in the previous step.
This function, is in fact much slower than
select_trajectories_wrapper_iteration because it uses more for loops to get
the pair distances from the right combinations that must be subtracted from the
total distances.

	
hypermodern_screening.select_sample_set.select_sample_set_normal(samp_list, n_select, numeric_zero)

	Post-select set of samples based on [0,1] and transform it to stnormal space.

	Parameters

	
	samp_list (List[ndarray]) – Sub-samples.

	n_select (int) – Number of sub-samples to select from samp_list.

	numeric_zero (float) – if normal is True: Prevents scipy.normal.ppt to return -Inf
and Inf for 0 and 1.

	Return type

	Tuple[List[ndarray], List[ndarray]]

	Returns

	
	samp_list

	steps_list

Notes

Function for post-selection is intermediate_ge_menendez_2014 because it is the
fastest.

See also

intermediate_ge_menendez_2014()

	
hypermodern_screening.select_sample_set.select_trajectories(pair_dist_matrix, n_traj)

	Compute total distance for each n_traj combinations of a set of samples.

	Parameters

	
	pair_dist_matrix (ndarray) – distance_matrix for a sample set.

	n_traj (int) – Number of sample combinations for which the total_distance is computed.

	Return type

	Tuple[List, ndarray]

	Returns

	
	max_dist_indices (list of ints) – Indices of samples in pair_dist_matrix that are part of the combination
with the largest total_distance.

	combi_total_distance (ndarray) – Matrix with n_traj + 1 rows. The first n_traj cols are filled with indices
of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

	Raises

	
	AssertionError – If pair_dist_matrix is not symmetric.

	AssertionError – If the number of combinations does not correspong to the combinations
 indicated by the size of pair_dist_matrix.

Notes

This function can be very slow because it computes distances
between np.binomial(len(pair_dist_matrix, n_traj) pairs of trajectories.
Example: np.biomial(30,15) = 155117520.
This selection function yields precise results
because each total distance for each possible combination of
trajectories is computed directly. The faster, iterative methods
can yield different results that are, however, close in the total
distance. The total distances tend to differentiate clearly.
Therefore, the optimal combination is precisely determined.

	
hypermodern_screening.select_sample_set.select_trajectories_wrapper_iteration(pair_dist_matrix, n_traj)

	Select the set of samples minus one sample.

Used for selecting iteratively rather than by brute force.
Implements the main step of the essential of the two “improvements”
from [2] to [1].

	Parameters

	
	pair_dist_matrix (ndarray) – Distance matrix of all combinations and their total_distance.

	n_traj (int) – number of samples to choose from a set of samples based on their
total_distance.

	Return type

	Tuple[List, ndarray]

	Returns

	
	tracker_keep_indices (list) – Indices of samples part of the selection.

	combi_total_distance (ndarray) – Matrix with n_traj + 1 rows. The first n_traj cols are filled with indices
of samples and the last column is the total_distance of the combinations
of samples marked by indices in the same row and the columns before.

See also

select_trajectories()

Notes

Oftentimes this function leads to diffent combinations than
select_trajectories. The reason seems to be that this function
deviates from the optimal path due to numerical reasons as different
combinations may be very close (see [2]).
However, the total sum of the returned combinations are close.
Therefore, the total_distance loss is negligible compared to the speed gain
for large numbers of trajectory combinations.
This implies that, combi_total_distance always differs from the one in
select_trajectories because it only contains the combination indices from
the last iteration if n_traj is smaller than the sample set minus 1.
The trick using tracker_keep_indices is an elegant solution.

	
hypermodern_screening.select_sample_set.total_distance(distance_matrix)

	Compute the total distance measure of all pairs of samples in a set.

The equation corresponds to Equation (10) in [2].

	Parameters

	distance_matrix (ndarray) – diagonal matrix of distances for sample pairs.

	Returns

	total_distance – total distance measure of all pairs of samples in a set.

	Return type

	float

hypermodern_python.transform_distributions

Functions for the inverse Rosenblatt / inverse Nataf transformation (u to z_c).

	
hypermodern_screening.transform_distributions.covariance_to_correlation(cov)

	Convert covariance matrix to correlation matrix.

	Parameters

	cov (ndarray) – Covariance matrix.

	Returns

	Correlation matrix.

	Return type

	corr

	
hypermodern_screening.transform_distributions.transform_stnormal_normal_corr(z_row, cov, mu)

	Transform u to z_c.

Transformation from standard normal to multivariate normal space with given
correlations following [1], page 77-102.

Step 1) Compute correlation matrix.
Step 2) Introduce dependencies to standard normal sample.
Step 3) De-standardize sample to normal space.

	Parameters

	
	z_row (ndarray) – Row of uncorrelated standard normal deviates.

	cov (ndarray) – Covariance matrix of correlated normal deviates.

	mu (ndarray) – Expectation values of correlated normal deviates

	Return type

	Tuple[ndarray, float]

	Returns

	
	x_norm_row – Row of correlated normal deviates.

	correlate_step – Lower right corner element of the lower Cholesky matrix.

Notes

Importantly, the step in the numerator of the uncorrelated Elementary Effect
is multiplied by correlate_step. Therefore, this factor has to multiply
the step in the denominator as well to not violate the definition of the
function derivation.
This method is equivalent to the one in [2], page 199 which uses the Cholesky
decomposition of the covariance matrix directly. This saves the scaling by SD and
expectation.
This method is simpler and slightly more precise than the one in [3], page 33, for
normally distributed paramters.
[1] explains how Rosenblatt and Nataf transformation are equal for normally
distributed deviates.

References

[1] Lemaire, M. (2013). Structural reliability. John Wiley & Sons.
[2] Gentle, J. E. (2006). Random number generation and Monte Carlo methods. Springer
Science & Business Media.
[3] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global
sensitivity analysis of models with dependent inputs. Reliability Engineering &
System Safety 100 (162), 28–39.

	
hypermodern_screening.transform_distributions.transform_uniform_stnormal_uncorr(uniform_deviates, numeric_zero=0.005)

	Transorm u to z_u.

Converts sample from uniform distribution to standard normal space
without regarding correlations.

	Parameters

	
	uniform_deviates (ndarray) – Draws from Uniform[0,1].

	numeric_zero (float) – Used to substitute zeros and ones before applying scipy.stats.norm
to not obtain -Inf and Inf.

	Returns

	uniform deviates converted to standard normal space without correlations.

	Return type

	stnormal_deviates

See also

morris_trajectory()

Notes

This transformation is already applied as option in morris_trajectory.
The reason is that scipy.stats.norm transforms the random draws from the
unit cube non-linearily including the addition of the step. To obtain
non-distorted screening measures, it is important to also account for this
transformation of the step in the denominator to not violate the definition of
the function derivation.
The parameter numeric_zero can be highly influential. I prefer it to be
relatively large to put more proportional, i.e. less weight on the extremes.

hypermodern_python.transform_reorder

Functions for reordering the sample rows following [1].

The intuition behind the reordering in general is the following: To compute the
uncorrelated Elementary Effects, one moves the sampled elements that have been changed
by step to the back of the row. For the correlated EE, one leaves the newly changed
element in front, but moves the elements that were changed in rows above to the end.
These compose the left parts of the numerator in the EE definition. One then subtracts
the same row, except that the changed element is unchanged. The reason for these
reorderings is that the correlation technique works hierarchically, like Dominoes.
The element before is unaffected by the correlation of the elements thereafter.
This implies that the first element is unchanged, as for the correlated EE. Therefore,
the step is involved in correlating the other elements without becoming changed itself.
The opposite is true for the uncorrelated EE.
The above procedure is dervied from the ordering in trajectory samples. It also works
for the radial design.
Other functions order the expectations and covariance matrix accordingly. They are also
used to initialize the correlating loops in the two functions in transform_ee.py in
the right order.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global
sensitivityanalysis of models with dependent inputs. Reliability Engineering &
System Safety 100 (162), 28–39.

	
hypermodern_screening.transform_reorder.ee_corr_reorder_sample(sample)

	For each row i (non-pythonic), move the first i-1 elements to the back.

	Parameters

	sample (ndarray) – sample.

	Returns

	Reordered sample.

	Return type

	sample_reordered

Notes

There is no row_plus_one=False option because this is equivalent
with uncorr_reorder_sample(sample, row_plus_one=True).

	
hypermodern_screening.transform_reorder.ee_uncorr_reorder_sample(sample, row_plus_one=True)

	For each row i (non-pythonic), move the first i elements to the back.

	Parameters

	
	sample (ndarray) – sample.

	row_plus_one (bool) – Add 1 to row index, i.e. start with second row.

	Returns

	Reordered sample.

	Return type

	sample_reordered

	
hypermodern_screening.transform_reorder.reorder_cov(cov)

	Arrange covariance matrix according to the expectation vector.

(When the first element is moved to the end.)

	Parameters

	cov (ndarray) – Covariance matrix of row.

	Returns

	Reordered covariance matrix of row.

	Return type

	cov_reordered

	
hypermodern_screening.transform_reorder.reorder_mu(mu)

	Move the first element of the expectation vector to the end.

	Parameters

	mu (ndarray) – Expectation values of row.

	Returns

	Reordered expectation values of row.

	Return type

	mu_reordered

	
hypermodern_screening.transform_reorder.reverse_ee_corr_reorder_sample(sample_reordered)

	Reverse of function corr_reorder_sample.

	Parameters

	sample_reordered (ndarray) – Reordered sample.

	Returns

	Trjectory in original order.

	Return type

	sample

	
hypermodern_screening.transform_reorder.reverse_ee_uncorr_reorder_sample(sample_reordered, row_plus_one=True)

	Reverse of function uncorr_reorder_sample.

	Parameters

	sample_reordered (ndarray) – Reordered sample.

	Returns

	sample – Trjectory in original order.

	Return type

	ndarray

	
hypermodern_screening.transform_reorder.reverse_reorder_cov(cov_reordered)

	Reverse of function reorder_cov.

	Parameters

	cov_reordered (ndarray) – Reordered covariance matrix.

	Returns

	cov – Covarince matrix in original order.

	Return type

	ndarray

	
hypermodern_screening.transform_reorder.reverse_reorder_mu(mu_reordered)

	Reverse of function reorder_mu.

	Parameters

	mu_reordered (ndarray) – Reordered expectation values of row.

	Returns

	Expectation values of row in original order.

	Return type

	mu

hypermodern_python.transform_ee

Compute the component for the redesigned EE expressions.

Functions to compute the arguments for the function evaluations in the numerator
of the individual uncorrelated and correlated Elementary Effects following [1],
page 33 and 34, and coefficients that scale the step.
These functions can handle samples in both, trajectory and radial, designs.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global
sensitivity analysis of models with dependent inputs. Reliability Engineering &
System Safety 100 (162), 28–39.

	
hypermodern_screening.transform_ee.trans_ee_corr(sample_list, cov, mu, radial=False)

	Transform list of samples to two lists of transformed samples.

(For the computation of the correlated Elementary Effects.)

	Parameters

	
	sample_list (List) – Set of untransformed samples.

	cov (ndarray) – Covariance matrix.

	mu (ndarray) – Expectation value.

	radial (bool) – Sample is in trajectory or radial design.

	Returns

	samples containing the rows that are the arguments for the LHS function
evaluation for the correlated Elementary Effect.

	Return type

	trans_piplusone_iminusone

	Raises

	AssertionError – If the dimension of mu, cov and the elements in sample_list
 do not fit together.

Notes

For the trajectory design, the transformation for the rows on the RHS of the
correlated Elementary Effects is equal to the one on the LHS of the uncorrelated
Elementary Effects. Therefore, if radial is False, this transformation is skipped
and left to trans_ee_uncorr_samples.
To compute the EEs from radial samples, the arguments of the subtracted function
are the first row of the sample. Yet, they must be reordered and transformed
according to their order, too.

See also

trans_ee_uncorr_samples()

	
hypermodern_screening.transform_ee.trans_ee_uncorr(sample_list, cov, mu, radial=False)

	Transform list of samples to two lists of transformed samples.

(For the computation of the uncorrelated Elementary Effects.)

	Parameters

	
	sample_list (List[ndarray]) – Set of untransformed samples.

	cov (np.ndarray) – Covariance matrix.

	mu (ndarray) – Expectation value.

	radial (bool) – Sample is in trajectory or radial design.

	Return type

	Tuple[List[ndarray], List[ndarray], List[ndarray]]

	Returns

	
	trans_piplusone_i – samples containing the rows that are the arguments for the LHS function
evaluation for the uncorrelated Elementary Effect.

	trans_pi_i – samples containing the rows that are the arguments for the RHS function
evaluation for the uncorrelated Elementary Effect.

	coeff_step – Factors in the denumerator of the uncorrelated Elementary Effect. Accounts
for the decorrelation of the Step.

	Raises

	AssertionError – If the dimension of mu, cov and the elements in sample_list
 do not fit together.

Notes

The rows in the two different transformed samples equal to T(p_{i+1}, i)
and T(p_{i}, i). Understanding the transformations may require to write up the
first transformation from p_i and p_{i+1} to T_1(p_{i}, i) and T_1(p_{i+1}, i).
T_1 shifts the first i elements to the end for each row p_{i}.
This function creates list of transformations of whole samples.
The rows in the samples for T(p_{i}, i) that are to be subtracted from
T(p_{i+1}, i), are still positioned one below compared to the samples for
T(p_{i}, i). Therefore, importantly, one needs to compare each row in a sample from
trans_pi_i with the respective row one below in trans_piplusone_i.
To compute the EEs from radial samples, the arguments of the subtracted function
are the first row of the sample. Yet, they must be reordered and transformed
according to their order, too.

hypermodern_python.screening_measures

Compute Elementary Effects from transformed samples and derived measures.

Computes the screening measures for correlated inputs that I improved upon
[1] by adjusting the step in the denumeroter to the transformed step in the
nominator in order to not violate the definition of the function derivative.

References

[1] Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global
sensitivityanalysis of models with dependent inputs. Reliability Engineering &
System Safety 100 (162), 28–39.

	
hypermodern_screening.screening_measures.compute_measures(ee_i, sd_x=array([1]), sd_y=array([1]), sigma_norm=False, ub=False)

	Compute aggregate measures based on (individual) Elementary Effects.

	ee_i
	(individual) Elementary Effects of input paramters (cols).

	sd_x
	Parameters’ SD.

	sd_y
	QoI’s SD.

	sigma_norm
	Indicates wether to compute measures normalized by sd_x / sd_y.

	ub
	Indicates wether to compute squared EEs and measures normalized by
var_x / var_y.

	Returns

	
	contains:
	
	ee_mean
	Mean Elementary Effect for each parameter.

	ee_abs_mean
	Mean absolute correlated Elementary Effect for each parameter.

	ee_sd
	SD of correlated Elementary Effects for each parameter.

	Return type

	measures_list

Notes

ub follows http://www.andreasaltelli.eu/file/repository/DGSA_MATCOM_2009.pdf.

	
hypermodern_screening.screening_measures.screening_measures(function, traj_list, step_list, cov, mu, radial=False)

	Compute screening measures for a set of paramters.

	Parameters

	
	function (Callable) – Function or Model of which its parameters are subject to screening.

	traj_list (List[ndarray]) – List of transformed trajectories according to [1].

	step_list (List[ndarray]) – List of steps that each parameter takes in each trajectory.

	cov (ndarray) – Covariance matrix of the input parameters.

	mu (ndarray) – Expectation values of the input parameters.

	radial (bool) – Sample is in trajectory or radial design.

	Return type

	Tuple[List[ndarray], List[ndarray]]

	Returns

	
	measures_list –

	contains:
	
	ee_uncorr
	Mean uncorrelated Elementary Effect for each parameter.

	ee_corr
	Mean correlated Elementary Effect for each parameter.

	abs_ee_uncorr
	Mean absolute uncorrelated Elementary Effect for each parameter.

	abs_ee_corr
	Mean absolute correlated Elementary Effect for each parameter.

	sd_ee_uncorr
	SD of uncorrelated Elementary Effects for each parameter.

	sd_ee_corr
	SD of correlated Elementary Effects for each parameter.

	obs_list –

	contains:
	
	ee_uncorr_i
	Observations of uncorrelated Elementary Effects.

	ee_corr_i
	Observations of correlated Elementary Effects.

Notes

The samples can be in trajectory or in radial design and the deviates can be
from an arbitrary (correlated) normal distribution or an uncorrelated
Uniform[0,1] distribution.
Unorrelated uniform paramters require different interpretion of mu
as a scaling summand rather than the expectation value.
It might be necessary to multiply the SDs by (n_trajs/(n_trajs - 1))
for the precise formula. However, this leads to problems for the case
of only one trajectory - which is used in
test_screening_measures_uncorrelated_g_function.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hypermodern_screening	

 	
 	
 hypermodern_screening.sampling_schemes	

 	
 	
 hypermodern_screening.screening_measures	

 	
 	
 hypermodern_screening.select_sample_set	

 	
 	
 hypermodern_screening.transform_distributions	

 	
 	
 hypermodern_screening.transform_ee	

 	
 	
 hypermodern_screening.transform_reorder	

Index

 C
 | D
 | E
 | F
 | H
 | I
 | M
 | N
 | R
 | S
 | T

C

 	
 	campolongo_2007() (in module hypermodern_screening.select_sample_set)

 	combi_wrapper() (in module hypermodern_screening.select_sample_set)

 	
 	compute_measures() (in module hypermodern_screening.screening_measures)

 	compute_pair_distance() (in module hypermodern_screening.select_sample_set)

 	covariance_to_correlation() (in module hypermodern_screening.transform_distributions)

D

 	
 	distance_matrix() (in module hypermodern_screening.select_sample_set)

E

 	
 	ee_corr_reorder_sample() (in module hypermodern_screening.transform_reorder)

 	
 	ee_uncorr_reorder_sample() (in module hypermodern_screening.transform_reorder)

F

 	
 	final_ge_menendez_2014() (in module hypermodern_screening.select_sample_set)

H

 	
 	hypermodern_screening.sampling_schemes (module)

 	hypermodern_screening.screening_measures (module)

 	hypermodern_screening.select_sample_set (module)

 	
 	hypermodern_screening.transform_distributions (module)

 	hypermodern_screening.transform_ee (module)

 	hypermodern_screening.transform_reorder (module)

I

 	
 	intermediate_ge_menendez_2014() (in module hypermodern_screening.select_sample_set)

M

 	
 	morris_trajectory() (in module hypermodern_screening.sampling_schemes)

N

 	
 	next_combi_total_distance_gm14() (in module hypermodern_screening.select_sample_set)

R

 	
 	radial_sample() (in module hypermodern_screening.sampling_schemes)

 	reorder_cov() (in module hypermodern_screening.transform_reorder)

 	reorder_mu() (in module hypermodern_screening.transform_reorder)

 	
 	reverse_ee_corr_reorder_sample() (in module hypermodern_screening.transform_reorder)

 	reverse_ee_uncorr_reorder_sample() (in module hypermodern_screening.transform_reorder)

 	reverse_reorder_cov() (in module hypermodern_screening.transform_reorder)

 	reverse_reorder_mu() (in module hypermodern_screening.transform_reorder)

S

 	
 	screening_measures() (in module hypermodern_screening.screening_measures)

 	select_sample_set_normal() (in module hypermodern_screening.select_sample_set)

 	
 	select_trajectories() (in module hypermodern_screening.select_sample_set)

 	select_trajectories_wrapper_iteration() (in module hypermodern_screening.select_sample_set)

 	stepsize() (in module hypermodern_screening.sampling_schemes)

T

 	
 	total_distance() (in module hypermodern_screening.select_sample_set)

 	trajectory_sample() (in module hypermodern_screening.sampling_schemes)

 	trans_ee_corr() (in module hypermodern_screening.transform_ee)

 	
 	trans_ee_uncorr() (in module hypermodern_screening.transform_ee)

 	transform_stnormal_normal_corr() (in module hypermodern_screening.transform_distributions)

 	transform_uniform_stnormal_uncorr() (in module hypermodern_screening.transform_distributions)

 nav.xhtml

 Table of Contents

 		
 The Hypermodern Screening Project

_static/file.png

_static/minus.png

_static/plus.png

